

Monterey Bay Sanctuary Citizen Watershed Monitoring Network

99 Pacific Street BLDG 455A Monterey, CA 93940 (831) 647-4227

2017 MRSWMP Dry Run & First Flush Monitoring Report

February 7, 2018

Prepared by:

Lisa Emanuelson, Volunteer Monitoring Coordinator Bridget Hoover, Water Quality Protection Program Director Monterey Bay National Marine Sanctuary

Funded by: Monterey Regional Storm Water Management Program

tents

²⁰¹⁷ Monitoring Sites		1
as N		
otal)		
a coli (E. coli)		
us		
as CaCO3)		
1)		
tergents		
V		
ohate as P.		
Juan as I		
ended Solids		
chaca Solids.		
i)	**	23
tion		24
County		
)ve		
	•••	26
		28
A 100 M 100		
WMP Monitoring sites		29
Results by Analyte		30
as N		31
		32
otal)		33
a coli (E. coli)		35
'1S		37
<u> </u>		39
CaCO3)		40
		41
gents		43
genis		44
		15.3

Pot Tcht Tur Ure Zin Appendix 3 Can Mon Paci Seas Appendix 4 Intro Met Resi

List of Tab

Table 1. Re
Table 2. Ins
Table 3. Ra
Table A1: F
Table A2: 8

Table A3: I

c iti n b

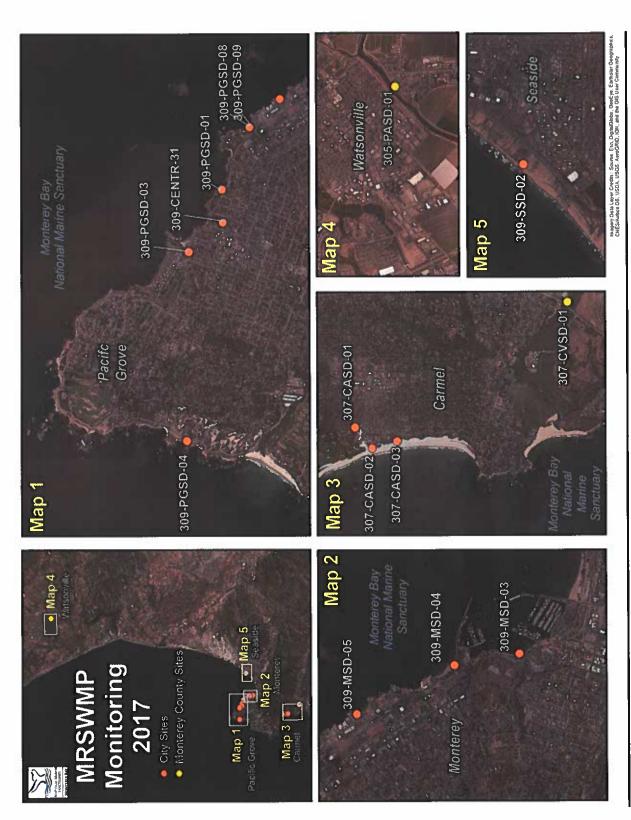


Figure 1. Monterey Regional Storm Water Management Program (MRSWMP) sites monitored for the 2017 Dry Run and First Flush.

Introduction

The Monterey Regional Storm Water Management Program's (MRSWMP) water quality monitoring program is modeled after the Monterey Bay National Marine Sanctuary's (MBNMS) Dry Run/First Flush monitoring program, for which volunteers collect water samples which are analyzed for common urban pollutants. This monitoring program design promotes volunteer participation, stewardship and environmental education while providing important data regarding the quality of water flowing into Monterey Bay National Marine Sanctuary.

The 2017 MRSWMP monitoring program collected water samples prior to the first major rainstorm of the year (Dry Run), and during the first major rainstorm of the winter season (First Flush). Samples collected during dry weather provide information regarding pollutants of concern and can give an indication of urban water uses (car washing, pressure washing, irrigation or illicit discharges), or groundwater base flow. In some cases, dry weather flows can be more concentrated than those of wet weather flows due to less dilution. Water samples collected during the first major storm of the winter season provide information on the concentration of contaminants in storm water after months of dry weather accumulation of pollutants on land in urban areas. All runoff from the Monterey region eventually flows into MBNMS except in Pacific Grove where some dry and wet weather flows are diverted to the sanitary sewer. It is hoped that this data provided by the MRSWMP water quality monitoring program provides local cities with the information to implement best management practices to improve water quality.

This monitoring program is designed to meet E.8.ii requirements under the Phase II Stormwater Permit of the MRSWMP, satisfying public involvement and participation elements of the permit. This monitoring program does not fulfill the E.13 requirements pertaining to ASBS Monitoring, TMDL Monitoring, 303(d) Monitoring or Receiving Water Monitoring, which are completed by permittees individually or through regional programs. For additional information regarding the Central Coast ASBS Regional Monitoring Program, please visit: http://ccasbsrmp.stanford.edu/

Methods

The same protocols and laboratory analyses are used for all of the MRSWMP water quality monitoring events. Volunteers take field measurements (water temperature, pH, electrical conductivity, and transparency), and collect water samples for lab analysis of nutrients (nitrate, orthophosphate, ammonia, and urea), bacteria (*Eschericia coli* and enterococcus), metals (copper, lead and zinc) and total suspended solids, color, Methylene Blue Active Substances (MBAS) detergents, fluoride, hardness (as CaCO3), potassium and turbidity.

Most results (lab and field) in this study are compared to receiving water standards established for beneficial uses in a stream, lake, or the ocean (see Table 1). These receiving water quality standards are not meant for end of pipe monitoring, such as for this MRSWMP water quality monitoring program, except for the analytes that refer to the MS4 General Permit. However, lacking many standards for end-of-pipe monitoring these receiving water standards are used for comparison. MBAS detergents and metal results are compared to the Water Quality Control Plan for the Central Coast Basin (Basin Plan) Water Quality Objectives (WQO) set by the Regional Water Quality Control Board (RWQCB) for the protection of marine aquatic life. Because there are no numerical water quality objectives in the Basin Plan for *E. coli*, enterococcus, nitrate, orthophosphate, and total

suspended solids (TSS), those results are compared with the U.S. Environmental Protection Agency (U.S. EPA) WQO and Central Coast Ambient Monitoring Program's (CCAMP) Action Levels. The U.S. EPA objectives are for the protection of human health while CCAMP's Action Levels are benchmarks that are set for receiving water concentrations at which pollutants may impact cold-water fish. Action Levels typically represent existing regulatory standards, levels derived from the literature or other agency references, or from data that shows levels are elevated relative to the data distribution for that parameter on the Central Coast. It is important to reiterate that both RWQCB Basin Plan water quality objectives and CCAMP Action Levels are established for receiving waters and not for end of pipe discharges such as is collected for the MRSWMP monitoring. There are no end of pipe objectives for most of the monitored analytes of the MRSWMP monitoring program, however, the State Water Resources Control Board (SWRCD) National Pollution Discharge and Elimination System (NPDES) MS4 General Permit does provide end of pipe water quality standards or Action Levels for: ammonia, color, hardness, potassium and turbidity. For turbidity, the SWRCB NPDES MS4 Action Level has been supplanted by CCAMP Action Level that is more protective of water quality. No Action Level was provided in the SWRCB NPDES MS4 General Permit for fluoride.

Dry Run monitoring entails collecting a single grab sample from each site with flowing water. Sites that did not have water flowing were documented as "no flow" on a field data sheet. Greenwood Park (Pacific Grove) is monitored for the Dry Run despite the flow being diverted into the sanitary sewer. This information is valuable as it identifies if there are contaminants in the runoff that did not flow to the ocean. During the First Flush event, grab samples were collected 30 minutes apart for two time series, results were averaged. In this report, averaged First Flush results are reported by analyte, individual time series results are reported by jurisdiction in Appendix 3. Samples for urea were collected only during the first time series, and are not an average but a single sample result from each event.

Grab sample results are reported as concentration, consistent with how the water quality objectives are defined. However, this does not give an indication of the load of pollutants being discharged. Flow was measured by filling a container of known volume (a bucket), timing how fast the container filled, and estimating how much of the flow was captured while filling the container. First Flush instantaneous flow calculations are an average of two time series samples, while the Dry Run instantaneous flow calculations are from a single sample (Table 2).

Figure 2. Volunteers gather at Twins (Monterey) for training during the Dry Run.

Photo: C. Mann.

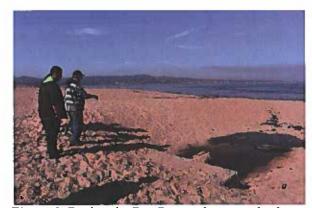


Figure 3. During the Dry Run, volunteers check First Flush sites for flowing water at Bay Street (Seaside). Photo: C. Mann.

g Q	ty j	
(epo g s)	e O vOi	Sou bi
/		
/		
	=	
	, , ,	
(g/L)		
	10	
	< >	
	5	¥3
	6	g ()
		*
	ı	
	l	

-3 u ·

Results

Two monitoring events took place during the 2017 MRSWMP permit year:

- The Dry Run was conducted on September 16th, 2017 at 15 sites with the help of 18 volunteers. Only 5 of the 15 sites had enough flowing water to be sampled.
- The first major storm of the rainy season hit the central Monterey Bay on the morning of November 16th, 2017. Volunteers for Pajaro (Monterey County) were mobilized at 12:00 pm when the front slid south (Figure 4) and came ashore. Monterey Peninsula volunteers were mobilized a few hours later at 2:00 pm when the front inched closer to the Monterey Peninsula (Figure 5). A total of 27 volunteers assisted with the collection of field data and samples at all 15 sites.

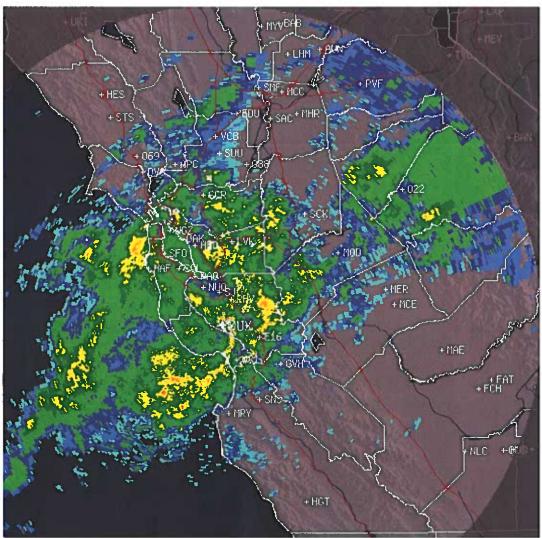


Figure 4. Radar image of the storm front as it approached Pajaro and the Monterey Peninsula on November 16, 2017 at 20:49:27 UTC, retrieved on November 20, 2017 at 1:16 pm. Image: National Weather Service.

Flow was measured by volunteers at the time of sampling except at the following sites: Bay Street (Seaside and Sand City), and Lovers (Pacific Grove) due to the end of pipe inaccessibility; Pajaro (Monterey County) and Crossroads (Monterey County) due to flap gates at the end of the outfall that impedes natural flow. HopkinsMon First Flush flow measurements were based upon just one measurement by the team. All other instantaneous flow estimates are listed in Table 2. First Flush flow estimates are averages of the first and second sample collections.

Analyte descriptions below are listed alphabetically and include box and whisker graphs showing the data divided into dry weather monitoring (DR) and wet weather monitoring (FF) by site. Dry Weather monitoring events include Dry Run and any historical Spring Run and Summer Run events; wet weather monitoring is inclusive of First Flush and historical Second Flush events. Box and whisker graphs show a distribution of the dataset in a convenient format for making comparisons. The box represents the range of 50% of the data with a point in the middle that represents the median value. The upper and lower whiskers represent the remaining upper and lower 25% of the data. The end point of the whiskers show the maximum and minimum result for that analyte at that location and gives an indication of best and worst case results. Each graph includes a marker (open circle) for the most recent year's result to gain insight into pollutant concentrations for the current year and how it compares to historical results.

Table 2: Instantaneous flow estimates in gallons per minute (gpm). NA= data not available due to issues with pipe and/or accessibility, NR= Not recorded, NF= No flow.

Sites	Dry Run	First Flush
Pajaro (Monterey County)	NF =	NA
Bay Street (Seaside and Sand City)	NF	NA
Twins (Monterey)	NR	540
San Carlos Beach (Monterey)	NF	240
Steinbeck (Monterey)	NF	59
HopkinsMon (Pacific Grove)	0.47	11
HopkinsPG (Pacific Grove)	NF	120
8th Street (Pacific Grove)	NF	260
Greenwood Park (Pacific Grove)	0.28	1200
Lover's (Pacific Grove)	NF	NA
Pico (Pacific Grove)	22.4	475
4 th Avenue (Carmel)	NF	14
Ocean Avenue (Carmel)	NF	56
8th Avenue (Carmel)	1.9	39
Crossroads (Monterey County)	NF	NA

NR= Not Recorded.

Table 3. The range of results for field measurements and lab samples. Dry Run samples are a single sample, First Flush range results are not averaged, with both time series samples taken into account.

Parameter	Units	Dry Run	First Flush
Ammonia as N	mg/L	ND – 1.1	0.11 - 6.00
Color	color units	14 - 100	150 - 1750
Conductivity	μS	1840 - 3800	70 - 950
Copper- total	μg/L	8 - 32	12.78 - 606.71
Escherichia coli (E. coli)	MPN/ 100 ml	880 – 242,000	626 - >241960
Enterococcus	MPN/ 100 ml	74 – 112000	4412 - 173289
Fluoride	mg/L	0.1 - 0.5	0.06 - 0.54
Hardness	mg/L	223 - 626	12.91 - 1098.99
Lead- total	μg/L	ND - 1	1.33 - 32.79
MBAS Detergents	mg/L	0.08 - 0.59	0.38 - 1.85
Nitrate as N	mg-N/L	ND – 1.1	0.14 - 4.00
Orthophosphate as P	mg-P/L	ND - 0.32	0.07 - 4.29
pН	pH units	6.5 – 7.5	5 - 9
Potassium	mg/L	6 - 15	1.44 - 64.77
Total Suspended Solids	mg/L	ND - 10	6.0 - 808.0
Transparency	cm	48.2 - >120	1 - 88
Turbidity	NTU	3.8 - 10	15.0 - 732.0
Urea	μg/ L	15 - 139	ND – 754.0
Water temperature	°C	16.8 – 19.5	16.5 – 18.6
Zinc- total	μg/L	ND - 106	64.56 - 458.01

Ammonia as N

Ammonia, in conjunction with other analytes, can assist in identifying a discharge of sewage, industrial, or commercial liquid wastes. The SWRCB NPDES MS4 General Permit Action Level for ammonia as N is 50 mg/L; the MDL was 0.05 mg/L for both the Dry Run and the First Flush. Figure 5 represents all MRSWMP ammonia as N data since 2013 for both dry weather (DR) and wet weather (FF) All results are listed in Appendix 2.

• 2017 Dry Run and First Flush results for all sites were below the Action Level.

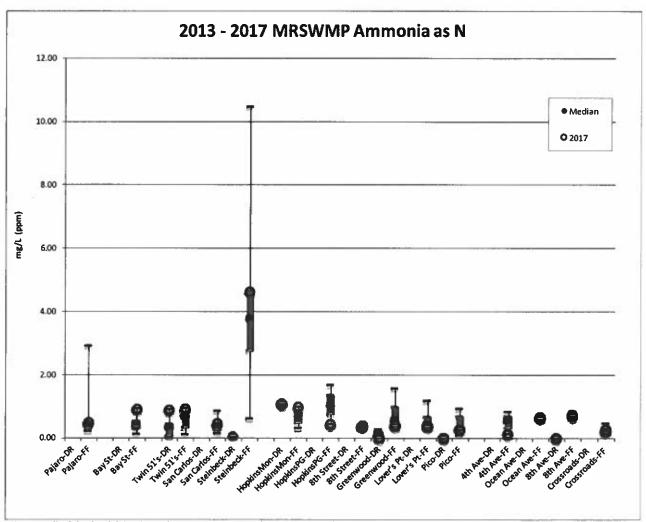


Figure 5. 2013- 2017 MRSWMP ammonia as N results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Color

Color, in conjunction with other analytes, can assist in identifying a discharge of sewage, wash water, or industrial or commercial liquid wastes. The SWRCB NPDES MS4 General Permit Action Level for color is 500 units; the MDL for color for both the dry and wet results varies based upon the turbidity of the sample water from 3 to 750 color units. Figure 6 represents all MRSWMP color data since 2013, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: In 2017, all sites were below the Action Level.
- First Flush results: All sites were below the Action Level, except for one site, Pajaro (Monterey County) which had an average result of 1125 color units in 2017.

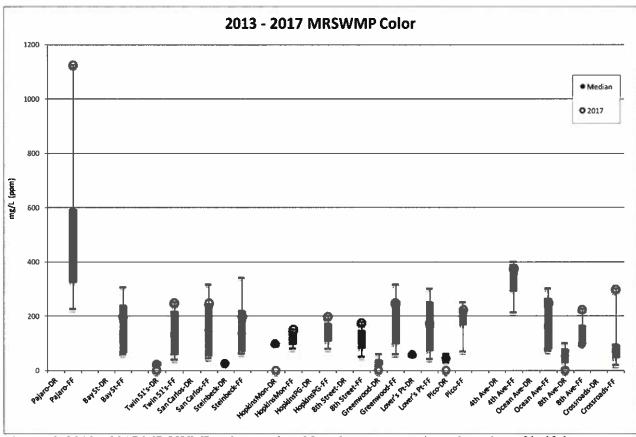


Figure 6. 2013 - 2017 MRSWMP color results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Copper

Copper is toxic to marine organisms causing reduced reproduction, developmental deformities, reduced photosynthesis, and mortality. Copper and other heavy metal toxicity can be mitigated by the presence of sediment or other binding compounds that may reduce the metal's bioavailability. Copper is present in some brake pads, pesticides, wood preservatives, roofing materials, and architectural structures such as gutters and downspouts.

The Basin Plan WQO established for total copper is 30 μ g/L; the MDL for copper was 2 μ g/L for both the Dry Run and First Flush. Figure 7 represents all MRSWMP copper data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- **Dry Run** results: Copper concentrations were below the WQO, except for one site, HopkinsMon (Pacific Grove) with a result of 32 μg/L in 2017.
- First Flush results: Thirteen of the sites monitored (87%) were above the WQO in 2017. The highest average result was from Steinbeck (Monterey) with a value of 499 μg/L.

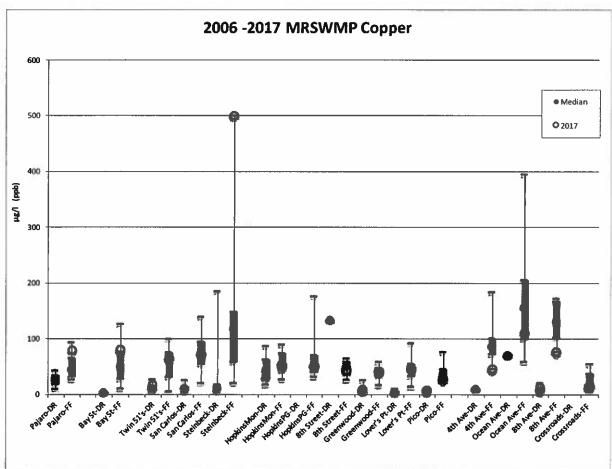


Figure 7. 2006-2017 MRSWMP total copper results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Escherichia coli (E. coli)

Escherichia coli (E. coli) and enterococcus are types of indicator bacteria found in warm-blooded animals. While E. coli and enterococcus do not cause disease in humans, they are pollutants of concern because they indicate the potential presence of pathogens that do cause disease in humans and wildlife.

The U.S. EPA Ambient Water Quality Criteria for E. oli is 235 MPN 100 ml. The MDL for E. coli was 1 MPN 100 ml for the Dry Run, and 100 MPN 100 ml for the First Flush. Figure 8 represents all MRSWMP E. coli data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- **Dry Run** results: In 2017, all of the sites were above the WQO for *E. coli* result was 242,000 MPN 100 ml from HopkinsMon (Pacific Grove).
- First Flush results: In 2017, all of the sites were above the WQO. The highest average result was from Greenwood Park (Pacific Grove) with a value of 146,841 MPN 100 ml.

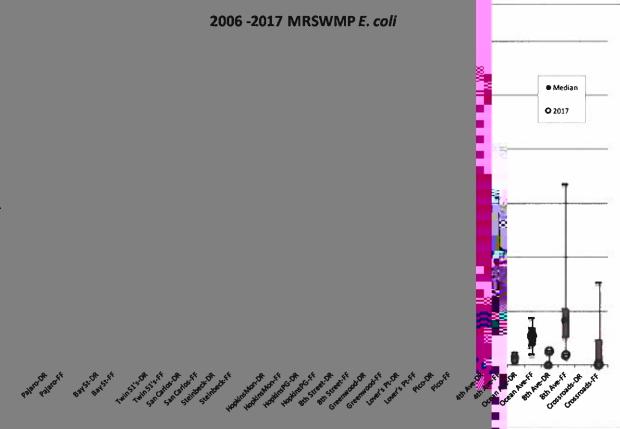


Figure 8. 2006-2017 MRSWMP *E. coli* results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

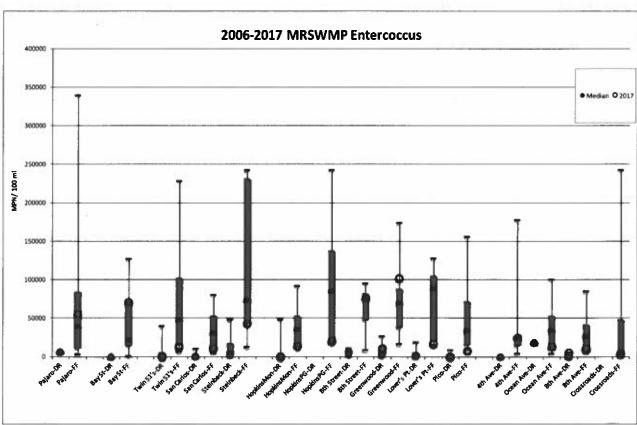
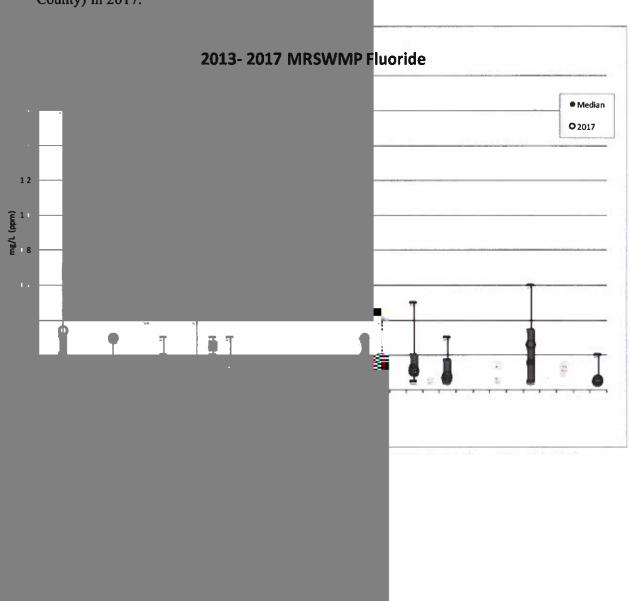



Figure 9. 2006-2017 MRSWMP enterococcus results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Fluoride

Fluoride, in conjunction with other analytes, can assist in identifying a discharge of sewage, wash water, tap water, or industrial or commercial iquid wastes. However, California American Water, the local water provider for Monterey Peninsula cities, does not add fluoride to local tap water and reports that tap water on the Monterey Peninsula contains from 0.25 - 0.60 mg/L of fluoride from natural sources. Sunny Mesa Community Services District provides water for the Pajaro (Monterey County) area and reports that fluoride is not added to the water supply which contains 0.20 mg/L from natural sources. There is no Action Level for fluoride. The MDL for fluoride for the Dry Run was 0.1 mg/L, and for the First Flush was 0.02 m L. Figure 10 represents all MRSWMP fluoride data since 2013, for both dry weather (DR) and wet weather (FFA1 results are listed in Appendix 2.

- Dry Run results: The highest fluoride result was from HopkinsMon (Pacific Grove) with a value of 0.9 mg/L in 2017.
- First Flush results: The highert average fluoride result was 0.34 mg/L from Pajaro (Monterey County) in 2017.

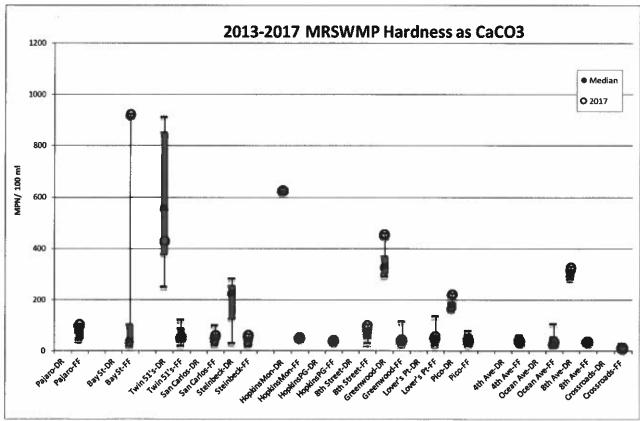
13

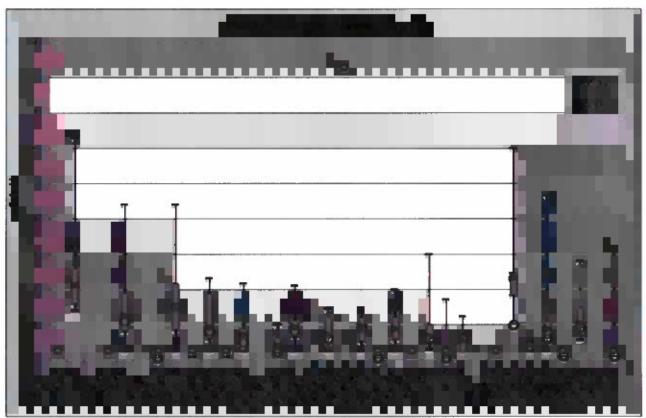
Hardness (as CaCO3)

Hardness (as CaCO3) in conjunction with other analytes, can assist in identifying a discharge of sewage, wash water, tap water, or industrial or commercial liquid wastes. Additionally, when hardness increases the amount of dissolved metals biologically available to aquatic and marine life decreases, resulting in a decrease in the toxicity of the metal.

The SWRCB NPDES MS4 General Permit Action Level for hardness is not less than or equal to 10 mg/L or greater than or equal to 2,000 mg/L; the MDL for hardness (as CaCO3) was 10 mg/L for both the Dry Run and First Flush. Figure 11 represents all MRSWMP hardness data since 2013, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

• 2017 Dry Run and First Flush results: All sites were within the acceptable range.




Figure 11. 2013 - 2017 MRSWMP hardness (as CaCO3) results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Lead

Lead is toxic to marine organisms causing reduced reproduction, developmental deformities, reduced photosynthesis, and mortality. Lead and other heavy metal toxicity can be mitigated by the presence of sediment or other binding compounds that may reduce the metal's bioavailability. Lead is present in some types of paint, water distribution systems, and auto emissions. It can be passed through the food web through uptake by plants that are grown in lead contaminated soils.

The Basin Plan WQO established for total lead is $30 \mu g/L$; the MDL for lead was $1 \mu g/L$ for both the Dry Run and First Flush. Figure 12 represents all MRSWMP lead data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: All lead results were below the WQO in 2017 and three sites had non-detects: Twins (Monterey), Greenwood Park (Pacific Grove), and Pico (Pacific Grove).
- First Flush results: Only one of the monitored sites was above the WQO in 2017. Pajaro (Monterey County) had an average result of 32 µg/L.

Figure 12. 2006-2017 MRSWMP lead results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

MBAS Detergents

MBAS detergents in sample water can determine if a discharge is from sewage or wash water, and in conjunction with other analytes, can assist in identifying a discharge of industrial or commercial liquid wastes.

The Basin Plan's WQO established for MBAS detergents is 0.2 mg/L; the MDL for MBAS detergents was 0.1 for the Dry Run, and 0.05 mg/L for the First Flush. Figure 13 represents all MRSWMP MBAS detergent data since 2013, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- **Dry Run** results: In 2017, MBAS concentrations were below the WQO for all but one site, HopkinsMon (Pacific Grove), with a result of 0.59 mg/L.
- First Flush results: In 2017, all of the sites monitored (100%) were above the WQO. The highest average result was from San Carlos (Monterey) with a concentration of 1.54 mg/L.

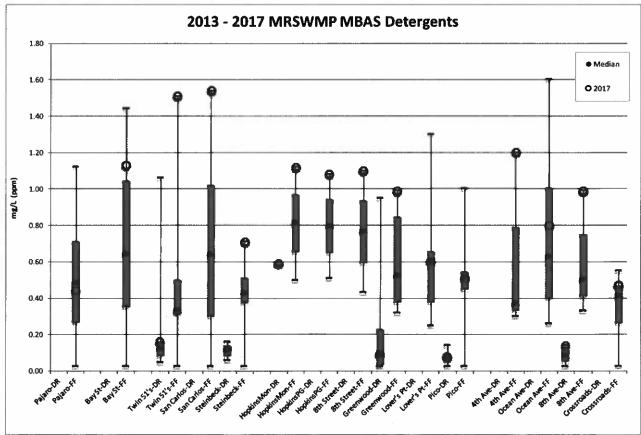


Figure 13. 2013 - 2017 MRSWMP MBAS detergent results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Nitrate as N

Nitrogen is an element needed for plant growth. Primary sources of nitrate include runoff from fertilized lawns, agricultural and pasture lands, construction sites and septic or sewer system leachate. Nitrate in runoff can lead to excessive nitrate in groundwater or increased growth of algal blooms that degrade water quality as those plants die off and consume oxygen in their decomposition.

The CCAMP Action Level for nitrate as N (NO₃-N) is 2.25 mg-N/L. The MDL was 0.1 mg-N/L for the Dry Run, and 0.01 mg-N/L for the First Flush. Figure 14 represents all MRSWMP nitrate as N data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- **Dry Run** results: In 2017, all sites were below the Action Level, and one site, 8th Avenue (Carmel) had a non-detect.
- First Flush results: In 2017, all but one site was below the Action Level. Steinbeck (Monterey) had an average result of 2.78 mg/L.

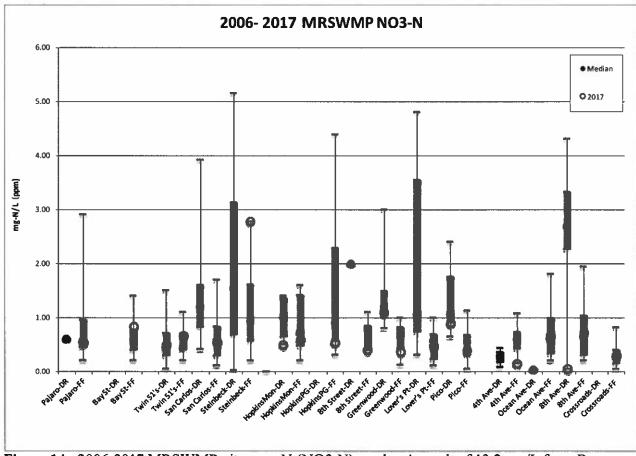


Figure 14. 2006-2017 MRSWMP nitrate as N (NO3-N) results. A result of 13.2 mg/L from Bay Street (Seaside) during the FF in 2006 was removed from the graph to better illustrate all other results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Orthophosphate as P

Phosphorus is an essential element for plant growth. Orthophosphate is a form of phosphorus commonly found bound to soil particles, in sewage, fertilizers, and in detergents that contain phosphates. In aquatic systems, orthophosphate is rapidly taken up by algae and aquatic plants. With excessive amounts present, large algal blooms can occur which can lead to degraded water quality conditions toxic to aquatic life.

The CCAMP Action Level for orthophosphate as P (PO₄-P) is 0.12 mg-P/L. The MDL was 0.1 mg-P/L for the Dry Run, and 0.02 mg P/L for the First Flush. Figure 15 represents all MRSWMP orthophosphate as P data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: In 2017, three of the sites monitored had results above the WQO, the highest result was 0.30 from Twins (Monterey). Greenwood Park (Pacific Grove) and Pico (Pacific Grove) had non-detects.
- First Flush results: In 2017, all results were above the Action Level. The highest average result was from Steinbeck (Monterey) with a value of 2.54 mg-P/L.

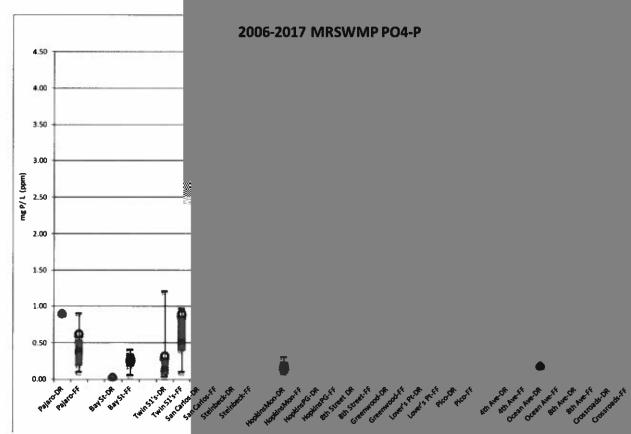


Figure 15. 2006-2017 MRSWMP orthophosphate as P (PO4-P) results. A result of 7.01 mg/L from Steinbeck (Monterey) during the FF in 2010 was removed from the graph to better illustrate all other results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Potassium

Potassium, in conjunction with other analytes, can assist in identifying a discharge of sewage, industrial, or commercial liquid wastes.

The SWRCB NPDES MS4 General Permit Action Level for potassium is 20 mg/L; the MDL was 0.5 mg/L for the Dry Run, and 1.0 mg/L for the First Flush. Figure 16 represents all MRSWMP potassium data since 2013, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: In 2017, all sites were below the Action Level.
- First Flush results: In 2017, all sites were below the Action Level except for one site, Bay Street (Seaside), with an average result of 55 mg/L.

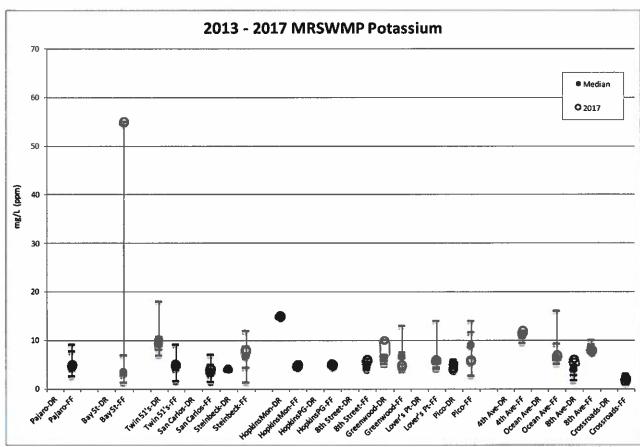


Figure 16. 2013 - 2017 MRSWMP potassium results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Total Suspended Solids

Total suspended solids (TSS) are measured because high amounts of sediment can destroy habitat, suffocate eggs in fresh water systems, limit the food supply, clog gills or impair an organism's vision when feeding.

The CCAMP Action Level for TSS is 500 mg/L; the MDL was 2 mg/L for both the Dry Run and First Flush. Figure 17 represents all MRSWMP TSS data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: In 2017, all sites were below the Action Level and one site, Pico (Pacific Grove), had a non-detect.
- First Flush results: In 2017, all sites except one were below the Action Level. Pajaro (Monterey County) had an average result of 652 mg/L.

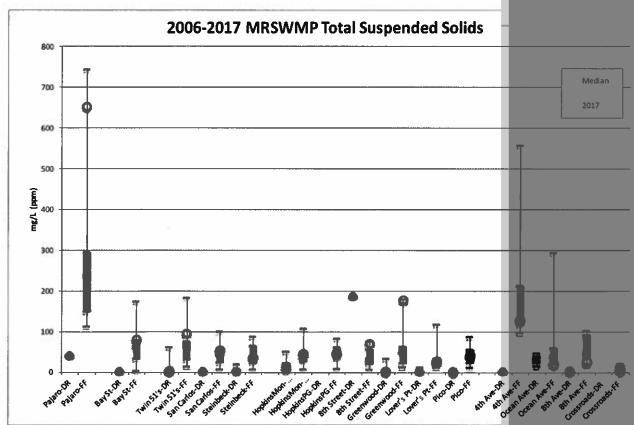


Figure 17. 2006-2017 MRSWMP TSS results. A result of 3080 mg/L from San Carlos (Monterey) during the DR in 2007 was removed from the graph to better illustrate all other results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

1 %

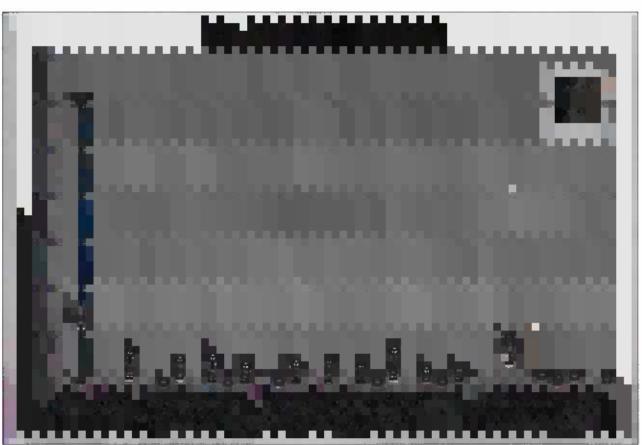


Figure 18. 2013- 2017 MRSWMP turbidity results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Urea

Urea is an organic compound that is often used in agricultural and urban fertilizers. While there is not an established Action Level, urea concentrations are compared between sites. The MDL for urea was $10 \mu g/L$ for the Dry Run, and $8 \mu g/L$ for the First Flush. Figure 20 represents all MRSWMP urea data since 2006, for both dry weather (DR) and wet weather (FF). During the First Flush urea was collected during the first time series only; results shown in Figure 19 are not averaged. All results are listed in Appendix 2.

- Dry Run results: In 2017, the highest urea result was from Twins (Monterey) with a value of 139 µg/L.
- First Flush results: In 2017, the highest result was from HopkinsMon (Monterey) with a value of 75. μg/L.

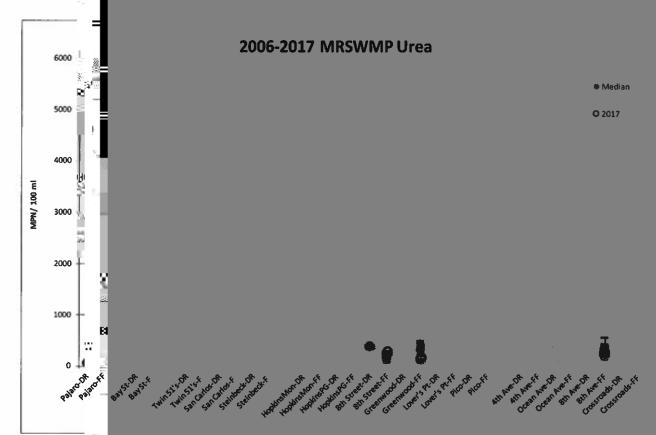


Figure 19. 2006–2017 MRSWMP urea results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

Zinc

Zinc is toxic to marine organisms causing reduced reproduction, developmental deformities and mortality. Zinc and other heavy metal toxicity can be mitigated by the presence of sediment or other binding compounds that may reduce the metal's bioavailability. Zinc sources in urban runoff include tires, paint, and outdoor zinc surfaces such as galvanized surfaces.

The Basin Plan WQO for total zinc is 200 µg/L. The zinc MDL was 10 µg/L for both the Dry Run and First Flush. Figure 20 represents all MRSWMP zinc data since 2006, for both dry weather (DR) and wet weather (FF). All results are listed in Appendix 2.

- Dry Run results: In 2017, all sites were below the Action Level, and one site, Pico (Pacific Grove) had a non-detect.
- First Flush results: In 2017, one site was above the WQO with an average result of 424 μg/L at Pajaro (Monterey County).

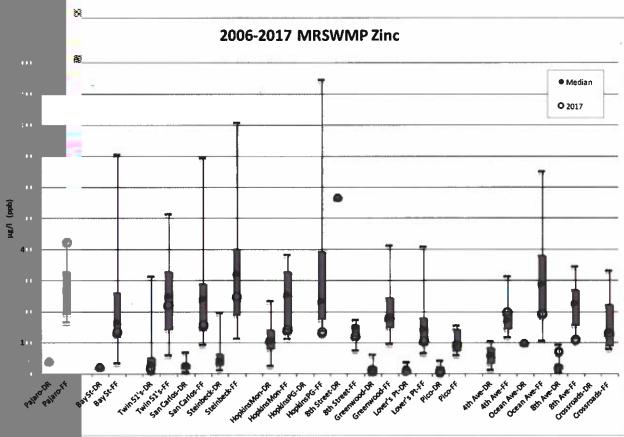


Figure 20. 2006-2017 MRSWMP zinc results. Non-detects were given the value of half the Minimum Detection Limit (MDL) but their true value lies between the zero and the MDL. Sites are listed north to south.

1

th

th

83

24

- Nitrate as N exceeded the CCAMP Action Level only at Steinbeck. The highest average of all MRSWMP sites was at Steinbeck with an average result of 2.78 mg-N/L.
- Orthophosphate exceeded the CCAMP Action Level in all samples at all Monterey sites. Steinbeck had the highest average of all MRSWMP 2017 sites with a result of 2.54 mg-P/L.
- Turbidity exceeded the CCAMP Action Level for all samples at all sites
- Zinc exceeded the RWQCB Basin Plan WQO for all samples at Steinbeck, and in the first time series samples at Twins.
- Ammonia, color, hardness, lead, potassium, and total suspended solids were all below WQOs and Action Levels for both time series samples at all sites.

All 2017 results can be found in Appendix 2 and by jurisdiction in Appendix 3.

Monterey County

For the 2017-2018 permit year, two sites were monitored: Pajaro and Crossroads. There was no flow at either site during the Dry Run monitoring event.

During the First Flush:

- E. coli exceeded the U.S. EPA WQO in all samples at both Monterey County sites.
- Enterococcus exceeded the U.S. EPA WQO in all samples at both Monterey County sites.
- Color exceeded the WQO listed in the NPDES MS4 permit for Pajaro with an average result of 1125 color units, the highest average for all MRSWMP 2017 sites, and the highest result for color since the start of MRSWMP color measurements in 2013.
- Copper exceeded the RWQCB Basin Plan WQO in both samples at Pajaro.
- Lead exceeded the RWQCB Basin Plan WQO in both samples at Pajaro. Pajaro had the highest average result for all MRSWMP 2017 sites with an average of 32 μg/L.
- MBAS surfactants exceeded the RWQCB Basin Plan WQO in all samples at both Monterey County sites.
- Orthophosphate exceeded the CCAMP Action Level in all samples at both Monterey County sites
- Total Suspended Solids exceeded the CCAMP Action Level at Pajaro with an average result of 652 mg/L, which is also the highest average result for all MRSWMP 2017 sites.
- Turbidity exceeded the CCAMP Action Level at Pajaro with an average result of 605.5 NTU, which is also the highest average result for all MRSWMP 2017 sites.
- Zinc exceeded the RWQCB Basin Plan WQO for Pajaro with an average result of 424 μ g/L, which is also the highest average result for all MRSWMP 2017 sites.
- Ammonia, hardness, nitrate as N, and potassium results did not exceed WQOs or Action Levels for any samples during the First Flush.

All 2017 results can be found in Appendix 2 and by jurisdiction in Appendix 3.

Pacific Grove

For the 2017-2018 permit year, six sites were monitored: HopkinsMon, HopkinsPG, 8th Street, Greenwood Park, Lovers, and Pico. Hopkins Mon, Hopkins PG, 8th Street, Greenwood Park, and Lovers are upstream of a dry weather diversion that diverts dry weather urban runoff usually from April to October, to the Monterey Regional Water Pollution Control Agency (now called Monterey

One Water) for treatment. Even though Greenwood Park water is diverted during dry weather, we continue to sample it because it flows into an urban park and is indicative of dry weather flows that are not entering the ocean. Due to the operation of the dry weather diversion, Lovers and 8th Street were not flowing for the Dry Run. Despite minimal flow, a team of volunteers persevered and collected samples at HopkinsMon for the Dry Run. During the First Flush, the HopkinsPG outfall stopped flowing due to the lack of upstream flow after the first set of samples were collected, therefore only one set of samples was collected at this site.

For the Dry Run (Pico, Greenwood Park, HopkinsMon):

- E. coli was above the U.S. EPA WQO at all sites. The highest E. coli result for all MRSWMP 2017 sites of 242,000 MPN/100 ml was from HopkinsMon.
- Enterococcus was above the U.S. EPA WQO at all sites. The highest result for all MRSWMP 2017 sites of 11,200 MPN/100 ml was from Greenwood Park.
- Copper exceeded the RWQCB Basin Plan WQO for HopkinsMon with a result of 32 μ g/L, and was the highest for all MRSWMP 2017 sites.
- MBAS surfactants exceeded the RWQCB Basin Plan WQO. HopkinsMon was the only MRSWMP site above the WQO with a result of 0.59 mg/L.
- Orthophosphate exceeded the CCAMP Action Level at HopkinsMon, but was not detected at either Greenwood Park and Pico.

During the First Flush:

- E. coli was over the U.S. EPA WQO in all samples at all sites. Greenwood Park had the highest average result for all MRSWMP 2017 sites at 146,841 MPN/100 ml.
- Enterococcus was over the U.S. EPA WQO in all samples at all sites. Greenwood Park had the highest average result of 102,024 MPN/100 ml for all MRSWMP 2017 sites.
- Copper exceeded the RWQCB Basin Plan WQO at all sites for all samples, except the second time series sample at Pico.
- MBAS surfactants exceeded the RWQCB Basin Plan WQO for all samples at all sites.
- Orthophosphate exceeded the CCAMP Action Level in all samples at all sites.
- Turbidity exceeded the CCAMP Action Level for all samples, except the second time series sample at Lovers.
- Zinc exceeded the RWQCB Basin Plan WQO only during the first time series sample at Greenwood Park.
- Ammonia, color, hardness, lead, nitrate as N, potassium, and total suspended solids were all below WQOs and Action Levels for both time series samples at all sites.

All 2017 results can be found in Appendix 2 and by jurisdiction in Appendix 3.

Seaside and Sand City

For the 2017-2018 permit year, Bay Street was the only site monitored, and as in past years, this site had no flow for the Dry Run monitoring event.

During the First Flush:

- E. coli and enterococcus exceeded the U.S. EPA WQO for all samples.
- Copper exceeded the RWQCB Basin Plan WQO for all samples.
- MBAS surfactants exceeded the RWQCB Basin Plan WQO for all samples.

- Orthophosphate exceeded the CCAMP Action Level for all samples.
- Potassium exceeded the WQO listed in the NPDES MS4 permit for all MRSWMP 2017 sites with an average result of 54.67 mg/L.
- Turbidity exceeded the CCAMP Action Level for all samples.
- Ammonia, color, hardness, lead, nitrate as N, total suspended solids, and zinc results did not exceed any WQOs or Action Levels for any samples.

All 2017 results can be found in Appendix 2 and by jurisdiction in Appendix 3.

Conclusion

Since 2006, the MRSWMP program has utilized the MBNMS' Dry Run and First Flush programs to ascertain what concentrations of pollutants are found in both dry and wet weather flows through storm drains discharging into the ocean. The sites monitored as part of the MRSWMP program are sites that can provide a good representation of water quality throughout a jurisdiction and in some cases have been monitored for many years. For 2017- 2018 permit year, fifteen sites were monitored for Dry Run and the First Flush in six jurisdictions: Monterey County, Seaside/Sand City, Monterey, Pacific Grove and Carmel.

In past years, approximately half of the MRSWMP sites did not flow during the dry weather months. This year, five (30%) of the storm drains had flow for the Dry Run: Twins (Monterey), HopkinsMon (Pacific Grove), Greenwood Park (Pacific Grove), Pico (Pacific Grove), and 8th Avenue (Carmel). Dry weather data is useful for identifying stormdrain catchments with running water containing pollutants that should otherwise be dry. First Flush samples may indicate the worst-case scenario of high pollutant concentrations discharging into the ocean after months of accumulating on the land. The data allows comparison of pollutant concentrations to water quality objectives and relative concentrations compared to other drainages. Combined with dry weather data, it informs managers whether additional source tracking is warranted.

The 2017 First Flush event occurred latest in the year compared to all of the First Flushes since the start of the program in 2000. Prior to 2017, the record was November 7th, 2002. There were several other smaller storms in Fall 2017 but they did not generate enough runoff long enough to mobilize for the First Flush. The November 16th storm dropped almost a half an inch of rain on the region in one day. Despite the smaller storms that might have washed some pollutants off hard surfaces, many sites exceeded WQOs or Action Levels for the First Flush. While results exceeded WQOs and Action Levels, the concentrations were generally lower than previous years, except for MBAS Detergents and Orthophosphate.

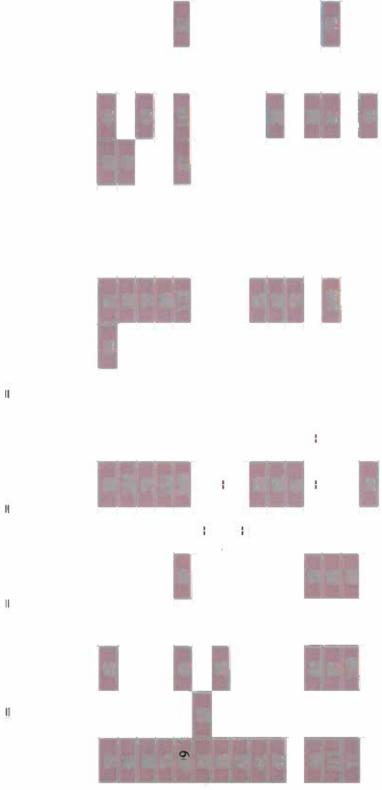
The First Flush event provides an understanding of the types of pollutants flowing into Monterey Bay National Marine Sanctuary after months of dry weather during which contaminants build up on streets, roofs and parking lots. By coupling First Flush with the Dry Run and source tracking within each watershed, a better understanding of each watershed's specific characteristics and problem areas can be achieved, providing needed information for decision making and effective storm water programs. We thank the local cities and Monterey County for supporting this effort and to the many volunteers for which this event would not be possible.

Appendix 1: MRSWMP Monitoring sites-listed from north to south

Jurisdiction	Site ID	Site Name	Drainage Area (acres)	Primry Land Use	MRSWMP Outfall #	Pipe ID (Inches)
•				70% residential		
Monterey County	PASD-01	Pajaro	30	30% commercial	MC-1	
			1	80% residential		
Seaside & Sand				10% commercial		
City	SSD-02	Bay Street	1200	10% public/ other	SC-1	90
				63% residential	1	
				15% commercial		
Monterey	MSD-03	Twin 51's	291	22% public/ other	M-15	51" (x2)
				12% commercial		
	i			38% residential		
Monterey	MSD-04	San Carlos	22	50% public/ other	M-7	24"
				66% commercial		
				12% residential		
Monterey	MSD-05	Steinbeck	37	22% public/ other	M-3	36"
				45% residential		
Pacific Grove	PGSD-09	HopkinsMon	40.7	30% commercial	PG-41	
] 40.7	25% public /other		
Pacific Grove	PGSD-08	HopkinsPG		2376 public /otilei	PG-40	
Pacific Grove	PGSD-01	8 th Street	35	100% residential	PG-32	
				71% residential		
		Greenwood		25% public/ other		
Pacific Grove	CENTR-31	Park	238.3	5% commercial	PG-28	36"
				54% residential		79
				1% commercial		1.1.
Pacific Grove	PGSD-03	Lover's Point	240	20% other	PG-22	54"
				60% residential		
Pacific Grove	PGSD-04	Pico	17.56	40% public	PG-03	40"
		*		86% residential		36"x60"
		73		7% comm/ res		box
Carmel	CASD-01	4th Avenue	128.0	7% public/ other	C-1	culvert
				22% commercial		
		Ocean		71% residential		
Carmel	CASD-02	Avenue	115.2	7% comm/ res	C-2	24"
				58% residential		
				27% comm/ res		
				13% commercial		
Carmel	CAS-03	8th Avenue	44.8	1% public/ other	C-3	24"
Monterey County	CVSD-01	Crossroads	21	100% commercial		

Ammonia as N

Comparison of ammonia results for MRSWMP monitoring and reported in mg/L. Shaded boxes indicate that the General Permit Action Level of 50 mg/L was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring for this analyte.


	FF	DR	FF	DR	FF	DR	FF	DR	SuR	SF	मृत	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013
Pajaro	0.51	NF	2.90	NF	0.31	NF	0.44	NF	NF	0.23	NA	NF
Bay St	0.93	NF	0.39	NF	0.53	NF	0.37	NF	NF	0.13	NA	NF
Twin 51's	0.92	6.0	0.32	0.44	69.0	0.34	0.72	0.02	0.06	0.10	NA	NA
San Carlos	0.47	NF	0.26	NF	0.35	NF	0.86	NF	NF	0.14	NA	NF
Steinbeck	4.63	NF	2.76	NF	3.79	NF	10.46	0.00	0.08	0.61	NA	NF
HopkinsMon	96.0	1.1	0.33	NF	-	:			-	-	:	1
HopkinsPG	0.45	NF	1.66	NF	•	1	-	-	-	-		1
8 th Street	0.41	NF	0.32	NF		1						-
Greenwood	0.41	ND	98.0	0.26	0.78	ND	1.57	0.21	0.11	NS	NA	NA
Lover's	0.39	NF	0.33	NF	0.49	NF	1.18	NF	NF	NS	NA	NF
Pico	0.29	QΝ	0.29	ND	0.68	ND	0.94	ND	ND	0.11	NA	NA
4th Avenue	0.13	NF	0.84	NF	0.53	NF	-	1	NF	NS	NS	NF
Ocean	0.65	NF	0.73	NF	0.59	NF	-	-	NF	NS	NA	NF
8th Avenue	0.71	ND	0.84	NF	0.73	NF	•		NF	NS	NS	NA
Crossroads	0.29	NF	0.18	NF	0.18	NF	0.46	NF	NF	0.12	NA	Ŗ

Color

Comparison of color results for MRSWMP monitoring, reported in Color Units. Shaded boxes indicate that the General Permit action level of 500 color units was exceeded. ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring of this analyte.

	FF	DR	मृष	DR	FF	DR	FF	SuR	SF	FF	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2013	2013
Pajaro	1125	NF	255	NF	400	NF	300	NF	500	625	ΝΈ
Bay St	200	NF	09	NF	65	Ŗ	305	ΝF	70	250	Ϋ́E
Twin 51's	250	16	40	24	85	30	185	30	50	225	24
San Carlos	250	NF	44	NF	50	ŊĖ	315	ΝF	70	225	K
Steinbeck	200	NF	75	NF	63	Ä	245		70	225	Ě
HopkinsMon	150	32	80	NF.		6	;				
HopkinsPG	200	NF	80	NF			!	•	-		1
8th Street	175	NF	50	ZF	1	1	1		1		i
Greenwood	250	. 10	09	30	100	25	315	20	NS	250	09
Lover's	175	NF	42	NF	75	NF	250	ZF	SZ	300	Ż
Pico	225	00	70	09	175	50	225	40	167	250	44
4th Avenue	375	NF	213	NF	400	NF	1	NF	SN	NS	N.
Ocean	250	NF	80	NF	73	NF	9 8	NF	SZ	300	NF
8th Avenue	225	14	100	N.F.	100	NF	1	NF	NS	SZ	7
Crossroads	300	NF	40	ZZ	. 20	NF	100	NF	70	75	NF

<u>,</u>

Copper continued

THE DR FF DR		SO NF ND NF	NF ND	NF ND 5 92 11 33	NF ND 5 92 11 135 17 188	NF ND 5 92 11 17 12 12 17 NF	NF ND 5 92 92 11 17 125 NF 89 NF NF 89 NF	NF ND 11 139 11 17 129 NF	NF ND 5 92 11 130 117 125 NF 88 NF NF 89 NF NF 49 3 41	NF ND 11 130 11 120 11 120 NF NP	NF ND 11 139 11 139 NF	NF ND ST ND NF ND NF ND NF	NF ND SY ND NF ND NF ND NF	NF ND ST ND NF ND NF NB NF NB NF
7007	- Z	717	5 92	5 92	5 92 11 130 17 128	5 92 11 139 17 125 NF 89	5 92 11 130 17 17 125 NF 89	5 92 11 130 17 125 NF 89 NF	5 92 11 139 17 125 NF 89 NF NF 49	5 92 11 139 17 125 NF 89 NF NF 49 3 41	5 92 11 139 17 125 NF 88 NF NF 49 3 41 ND 87 ND 87	5 92 11 139 17 128 NF NF 89 NB 88 ND 87 ND 87 NB 88	5 92 11 139 17 125 NF 89 NF ND 57 ND 57 NF	5 92 11 139 17 188 NF NF 88 ND 87 NF NF 14 NF 14
0007 - QN		\$		11	111	11 L	11 17 NF NF	11	11 17 NF NF NF 3	11 NF NF NF ND ND ND	11 NF NF N	11	11	11
+ + +	H				17 125									
 				83 17		ST 72								
	H	H	07	85										
5 2 2				26 185										
9 93 NF 42 11 69	+	H		6 26		86 49	Į.							
44 9 126 N 78 1			77	148 6		79 8								
	上 と	9			10									
+	N K	20	10	<-	12	24								
7 0107	Z Z Z	12	26	7	17	18								
	73	66	124	020	700	72	72 72	72 7.0	7 7 5	5 5 5 14	5 4 4 6	5 5 6 6	5 5 6 6 8 3 3 5	5 5 6 6 7 7 7 7
1107		11	00	10	18	16	NF 18	16 NF 13	13 RF 16 8	NF 16 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	NH 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	NF 16 10 10 10 10 10 10 10 10 10 10 10 10 10	NF 10 10 10 NF	NF N
	Ä Ä	5	4	0	0	0	o o NF	9 NF 17	9 9 17 17 17 17 17 17 17 17 17 17 17 17 17	9 0 17 17 17 4 4	% NF	9 9 NF 17 17 NF NP NP NF NF	9 9 NF 17 17 NF	9 9 NF
1110	岩岩	6	00	6	,	NF.	¥ ¥	世 世 世	F F F 01	H H H O H	A A B B B A A A A A A A A A A A A A A A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}	F F F O F O F O
2011	28	52	65	7		27	27	27 35 NF	27 35 NF	27 35 NF	27 35 NF 0	277 35 NF	27 35 NF 0 0	27 35 NF 0 0 3
Site Neme	Pajaro Bay St	Twin 51's	San Carlos	Steinbeck		opkinsMon	lopkinsMon lopkinsPG	IopkinsMon IopkinsPG	IopkinsMon IopkinsPG h Street Greenwood	HopkinsMon HopkinsPG h Street Treenwood	HopkinsMon HopkinsPG In Street Breenwood Lover's	HopkinsMon HopkinsPG Sharteet Greenwood Lover's Lico	HopkinsMon HopkinsPG Treenwood Over's Jico Ith Avenue	HopkinsMon HopkinsPG 8th Street Greenwood Lover's Pico 4th Avenue Ocean 8th Avenue

E. coli

Comparison of *E. coli* results for MRSWMP monitoring reported in MPN/ 100 ml. Shaded boxes indicate that the EPA Water Quality Objective of 235 MPN/ 100 ml was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring. The table is broken into two sections to facilitate printing.

Site Name	FF 2017	DR 2017	FF 2016	DR 2016	FF 2015	DR 2015	FF 2014	DR 2014	SuR 2014	SF 2014	FF 2013	DR 2013	SuR 2013	SF 2013	FF 2012	DR 2012	SuR 2012	SpR 2012
Pajaro	15112		20660	NF	4693	NF	7617	NF	NF	860	3163	NF	ΝF	618	8766	NF	NF	ŊŖ
Bay St	72839		21026	NF	38969	NF	94500	NF	NF	6488	148335	NF	Ŗ	241960	43518	Ŗ	ЙF	Ŗ
Twin 51's	9267	1610	42755	141361	53713	198629	60200	6152	3106	9208	67265	4978	2878	4962	72294	296	5289	17329
San Carlos	10148		8044	NF	13973	NF	138000	NF	NF	4106	3475	NF	5206	NS	NS	NF	20	20
Steinbeck	20999		27860	NF	25024	NF	65300	3836	196	21870	88662	NF	34658	241960	130847	2500	653	218
HopkinsMon	25589	242000	12246	NF	1	-	-	:	1	:	-	ŧ	3316	NS	NS	NS	169	SN
HopkinsPG	29093		36606	NF	1	1	1	1	ŧ	:		1	NF	SN	SN	NS	ΝF	NS
8th Street	33673		12885	NF	:	•	,	;	3 9	3	:	1	Ŗ	NS	NS	ХF	Ŗ	456
Greenwood	146841	2920	19105	1153	41922	28272	36590	6152	5510	NS	19585	39726	1980	NS	35076	31062	6511	1253
Lover's	8712		14634	NF	28761	NF	60200	NF	NF	NS	30745	NF	ΝF	NS	42288	NF	NF	5510
Pico	7121	880	35076	30	25572	<20	42603	402	2002	4884	58030	244	8	3214	37769	1720	20	40
4th Avenue	49134		38799	NF	46181	NF	1		NF	SN	NS	NF	Ŗ	NS	45645	Ä	NF.	NF
Ocean	27508		23084	NF	32817	NF	-	:	NF	NS	16250	NF	Ŗ	NS	28322	Ŗ	1918	Ë
8th Avenue	9462	13200	15252	NF	43788	NF	!	;	ΝF	NS	NS	<20	82	NS	NS	Ŗ	<20	20
Crossroads	743		2020	NF	14265	岁	94500	Ŗ	NF	703	1095	NF.	ŊŖ	296	76395	Ŗ	Ŗ	Ė

	- 6														100
DR 2011	T	SuR 2011	SpR 2011	FF 2010	DR 2010	SuR 2010	SpR 2010	FF 2009	DR 2009	FF 2008	DR 2008	FF 2007	DR 2007	FF 2006	DR 2006
Ż		Ŗ	ΝF	2050	NF	NF	NF	4681	40	15186	NF	1	1	ļ	ŀ
Ė		ΝF	672	64900	NF	ŊF	NF	34162	NF	20277	NF	46464	NF	856	Ė
7746	9	6152	19608	61300	13340	48384	12263	229170	296	83819	6150	165301	25993	185536	50
20		40	20	40400	13734	244	149	8770	8212	17484	40	16304	218	14749	798
6511	11	194	126	145400	1974	398	220	90824	4494	112738	48400	40925	8926	158848	2602
Ŗ	Ħ	20	3912	29650	104	20	3912	19735	48392	3741	312	82782	岁	196179	¥
	Ę	NF	NF	40300	NF	NF	NF	25994	NF	27742	NF	27742	NF	1	-1
	Ż	ΝF	456	20976	39726	4283	6511	92622	NF	26485	NF	14636	NF	50978	
89	9689	12976	10950	32700	1814	8212	2966	44059	1976	31528	13000	16767	11588	73322	20529
	Ż	52	220	07	82	82	3870	59	170	2491	1390	. 11	3	2534	NF
•	802	80	61	15 50	410	40	148		104	20462	0	155 3	5 18		09
	<20	ĸ	126	111	NF	上	NF		NF	11413	N.	4 590	NF.	1	1
	Ę	Z	ZF	950	NF	10950	NF	34 58	NF	214	NF	43374	NF.	ł	1
	263	104	20		520	20	20	NA	80	3 119	126	590 7	82	-	;
	Ė	Ë	Ż	25950	Ä	Ä	NF	X	Ŗ	:	-	·	1	:	

Enterococcus

Comparison of enterococcus results for MRSWMP monitoring reported in MPN/ 100 ml. Shaded boxes indicate that the EPA Water Quality Objective of 104 MPN/ 100 ml was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring. The table is broken into two sections to facilitate printing.

SpR 2012	Ŗ	NF	1587	313	4494	SN	NS	218	1024	1352	19	ΝF	Ä	20	Ä
SuR 2012	Ą	Ŗ	431	20	16328	242	NF	Ŗ	25993	Ŗ	40	Ŗ	17329	20	岩
DR 2012	Ŗ	ŊŁ	492	Ŗ	1587	SN	NS	Ŗ	14540	NF	583	Ŗ	Ŗ	Ŗ	岩
FF 2012	92342	82392	79326	NS	241957	NS	NS	NS	81461	95634	70697	14554	55607	NS	241960
SF 2013	0979	12229	9689	NS	43517	NS	NS	NS	NS	SN	7308	SN	NS	SN	559
SuR 2013	NF	NF	942	374	48392	12976	NF	NF	1226	NF	746	ż	NF	974	Ϋ́Z
DR 2013	NF	NF	22398	NF	NF	1	;	1	8704	NF	322	NF	N.	104	ž
FF 2013	3163	23415	21000	4825	88662	:	:	:	20880	127750	9005	NS	9665	NS	1095
SF 2014	7541	17329	8164	8164	34480	1	1	ŧ	NS	NS	15650	NS	NS	NS	1434
SuR 2014	NF	NF	1760	NF	270	-	-	-	2290	NF	3978	NF	NF	NF	Z,
DR 2014	NF	NF	1417	NF	4962	ŀ	1	;	4374	NF	83	}	1	:	ŊŖ
FF 2014	20013	126500	37150	79650	54200	ı	!	-	41950	20768	23118	1	1	1	1530
DR 2015	Ŗ	ΝF	7746	NF	Ŗ	1	:	;	20925	Ŗ	<20	Ŗ	МF	Ŗ	Ė
FF 2015	12311	17265	25867	18471	56518			-	40794	119844	29926	22801	14901	25451	8083
DR 2016	NF	NF	1470	NF	NF	NF	Ŗ	NF	40	NF	416	NF	NF	NF	圪
FF 2016	25545	18458	14298	7921	13667	19241	18168	8704	16001	18572	13415	7039	11051	7607	2607
DR 2017	NF	NF	74	NF	NF	300	ЯЯ	NF	11200	Ŗ	328	NF	NF	5480	NF
FF 2017	55711	70697	13590	10884	43561	14088	21426	76523	102024	17090	7980	24825	13744	11072	4892
Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's	Pico	4th Avenue	Ocean	8th Avenue	Crossroads

Enterococcus continued

		Ġ	2	d.2	90	a d	0.0	9	100	2	6	2		2		2
2011 2011 2011 2011 2010 2010	2011 2011 2010	2011 2010	1 2010		2010		2010	2010	2009	2009	2008	2008	2007	2007	FF 2006	200¢
8 I NF NF NF 00 NF	NF NF 00	NF 00	00		NF		NF	NF	6		100612	臣	1	!		
47396 NF NF 20 NF	NF 20	20	A COLUMN TO A COLU	NF	NF		NF	NF	90327	NF	13650	¥	13435	Ŗ	341	1
67477 346 8 9 06 1 81 9	8 9 06 1 81	06 1 81	181		6	200	498	6992	I	#	-1-	8700	57609			1
40	40	40									-	62		20		-
AN.	NF The state of th													RF	1	and the second
NF NF NF NF	NF NF	NF		ZY	NF		NF	NF	157330	NF	84778	NF.		N.	ŀ	1
NF NF	NF						NF	NF	-	NF		NF		Ä		1
																ŀ
NF 82		82	82	82	82		104			104					7788	1
126 20 20	20		20												•	1
20 NF 20 NF	NF 20	20	•	Ą	Ŗ		NF	NF	40438	NF		NF		NF	1	1
NF NF NF	NF NF	NF		Ż	Ż			NF	48392	NF		NF		NF	1	1
82 187 100	187	187	187	100	100		40	40	NA						1	
NF NF 60200	NF 60200	NF 60200	60200	60200 NF	Ż		Ä	ZF	Z	NF	:	1	1		ŀ	

Fluoride

Comparison of fluoride results for MRSWMP monitoring reported in mg/L. There is no water quality objective for fluoride; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring of this analyte.

DR	2013	NF	אוני	Nr	0.5	0.5 NF	NF NF NF	0.5 NF NF	NF NF	NF NF 1	0.5 NF NF 0.2	NF N	0.5 NF NF N	0.5 NF	NF N	NF N
F	2013	0.7	QN —		0.2	0.2	0.2	0.4	0.2 0.4 0.1	0.7	0.1	0.4 0.4 0.5 0.5	0.1 0.1 0.1 0.4 0.4 0.4 0.5 0.5	0.1 0.1 0.1 0.5 0.5 NS	0.2 0.1 0.1 0.5 0.5 0.5 0.6 0.6	0.2 0.1 0.1 0.5 0.5 0.5 0.6 NS
SF	2014	ND	ND	-	ND	ON ON			QN QN	QN QN : I I	ON ON SN	ON ON SN	ON ON SN SN ON	ON ON SN ON SN ON SN ON SN	ON ON SN	ON O
SuR	2014	NF	NF	90	2:0	NF	0.3	NF 0.3	0.3	0.3	NF 0.3 0.3	NF 0.3 NF NF	NF 0.3 NF	0.3 0.3 0.1 NF	NF	0.3 0.3 NF NF N
DR	2014	NF	NF	0.4		NF	NF 0.2	NF 0.2	NF 0.2	NF 0.2	NF 0.2 0.2	NF 0.2	NF NF NF ND ND	NF 0.2 NF ND NF ND NF ND ND	NF	NF N
ЙÑ	2014	0.2	0.1	٤0	1	0.2	0.2	0.2	0.2	0.2 0.3	0.2 0.3	0.2 0.3 0.2 0.2 0.2	0.2 0.3 0.2 0.2 0.3	0.3 0.2 0.3 0.3	0.2 0.2 0.2 0.3 0.3 0.3	0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3
DR DR	2015	NF	NF	0.5		NF	NF	NF -:	NF	NF	NF	NF 0.2	NF 0.2 NF	NF 0.2 NF NF NF NF NF	NF 0.2 NF NF NF NF NF NF	NF N
FF	2015	0.20	ND	QN		QN	N ON	QN CN	QN III	2 2 1 1 1	S S S S	ND	ND	A C	A C S C C C C C C C C C C C C C C C	A C
DR	2016	NF	NF	0.70		Z	żŻ	ż Ł Ł			NF NF NF 0.20	NF NF NF NF NF NF NF	NF NF NF NF NF NF 0.20	NF N	NF N	NF N
Į.	2016	1.60	0.10	0.20	CZ	1	9	0.10	0.10 DN DON DON	O.10 O.10 O.10	ON O	ON O	G	ON O	ON O	G
DR	2017	NF	NF	0.5	NF		NF.	NF 0.5	NF 0.5 NF	NF NF NF	NF 0.5 NF NF 0.3	NF N	NF N	NF 0.5 NF NF 0.3 NF 0.1	NF N	NF N
FF	2017	0.34	0.30	0.10	0.10		0.12	0.12	0.12	0.12 0.09 0.10 0.10	0.12 0.09 0.10 0.10 0.08	0.12 0.09 0.10 0.10 0.08	0.12 0.09 0.10 0.10 0.08 0.11 0.11	0.12 0.09 0.10 0.10 0.08 0.01 0.01 0.01	0.12 0.09 0.10 0.10 0.08 0.08 0.14 0.14	0.12 0.09 0.10 0.10 0.08 0.11 0.14 0.26
	Site Name	Pajaro	Bay St	Twin 51's	San Carlos		Steinbeck	Steinbeck HopkinsMon	Steinbeck HopkinsMon HopkinsPG	Steinbeck HopkinsMon HopkinsPG	Steinbeck HopkinsMon HopkinsPG 8 th Street Greenwood	Steinbeck HopkinsMon HopkinsPG 8th Street Greenwood Lover's	Steinbeck HopkinsMon HopkinsPG 8 th Street Greenwood Lover's Pico	Steinbeck HopkinsMon HopkinsPG 8th Street Greenwood Lover's Pico	Steinbeck HopkinsMon HopkinsPG 8 th Street Greenwood Lover's Pico 4 th Avenue Ocean	Steinbeck HopkinsMon HopkinsPG 8th Street Greenwood Lover's Pico 4th Avenue Ocean 8th Avenue

Hardness

Comparison of hardness results for MRSWMP monitoring reported in mg/L. Shaded boxes indicate that the General Permit Action Level of less than or equal to 10 mg/L or greater than or equal to 2000 mg/L was exceeded; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring.

	FF	DR	FF	DR	FF	DR	FF	DR	SuR	SF	FF	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013
Pajaro	103	NF	101	NF	41	NF	45	NF.	NF	50	102	ΝΉ
Bay St	922	NF	23	NF	28	NF	48	N.F.	NF	21	120	NF
Twin 51's	55	429	39	905	53	248	93	910	682	19	119	360
San Carlos	64	NF	32	NF	34	NF	57	ΝF	ΝĖ	23	100	Ŗ
Steinbeck	64	NF	33	NF	29	NF	47	224	281	17	52	Ä
HopkinsMon	54	626	51	NF		1	ł	1	!	ŀ	1	1
HopkinsPG	43	NF	42	NF	1	ł	ा	1	1	1	1	1
8th Street	102	NF	31	NF	,	1	1	1	1	!	1	1
Greenwood	46	456	23	376	35	298	45	314	289	NS	114	341
Lover's	57	NF	31	NF	20	NF	48	NF	NF	SN	135	ΝF
Pico	39	223	36	179	62	161	09	191	192	18	75	163
4th Avenue	36	NF	58	NF	44	NF	-	:	ZŁ	SN	NS	Ŗ
Ocean	36	NF	25	NF	25	NF	}	1	Ŗ	SN	105	岩
8th Avenue	38	326	40	NF	40	NF		1	NF	NS	SN	277
Crossroads	14	NF	20	NF	6	NF	18	NF	Ŗ	6	28	Ä

Comparison of total lead results for MRSWMP monitoring reported in μg/L. Shaded boxes indicate that the Basin Plan Objective of 30 μg/L was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP. The table below is broken into two sections to facilitate printing.

Lead

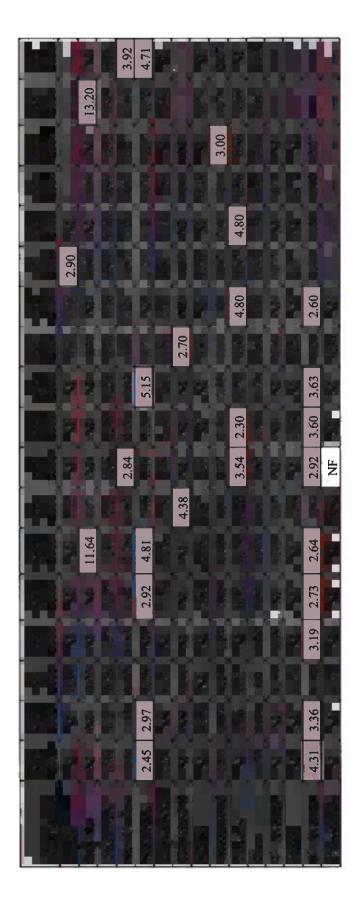
DR	2012	NF	NF	ND	NF	ND	NA	NF	NF	ND	NF	ND	NF	NF	NF	NF
FF	2012	20	8	23	NS	7	SN	NS	SN	4	9	ND	23	11	NS	CIN
SF	2013	22	9	ND	NS	ND	NS	NS	SN	NS	NS	ND	NS	NS	NS	CN
SuR	2013	NF	NF	ND	ND	ND	ND	NF	NF	ND	NF	ND	NF	NF	ND	Ä
DR	2013	NF	NF	ND	NF	NF	1	}	- 1	ND	NF	ND	NF	NF	ND	NF
H H	2013	16	20	31	8	ND	1	1	1	8	9	9	NS	6	NS	CZ
SF	2014	24	10	ND	10	8	-	1	1	NS	NS	8	NS	SN	NS	31
SuR	2014	NF	NF	ND	NF	ND	8	1	:	ND	NF	17	NF	NF	NF	NF
DR	2014	NF	NF	QN	NF	ΩN		-		QN	NF	ND	-		-	NF
मिन	2014	14	44	12	23	15				11	11	ND	1	***		UN
DR	2015	NF	NF	ND	NF	NF				ND	NF	ND	NF	NF	NF	NF
ĀF	2015	16	7	15	5	ND	-	1	:	6	9	5	32	11	28	C N
DR	2016	NF	NF	ND	NF	NF	NF	NF	NF	QN	NF	ND	NF	NF	NF	ΝF
F	2016	14	8	15	ND	ND	QN	ND	ND	ND	4	ND	24	ND	6	S
DR	2017	NF	NF	ND	NF	NF	2	Ż	NF	ND	NF	ND	NF	NF	1	Ą
FF	2017	32	11	15	8	5	8	9	6	15	9	9	10	9	6	-
	Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's	Pico	4th Avenue	Ocean	8th Avenue	Croseroads

Lead Continued

_	Т	_	<u> </u>	1											
DR	1	岂	S	S	Ŕ	Ä	1	Ë	QN	Ż	S	1	1	1	
FF	1	B	13	=	7	10	1	12	00	6	5		1		
DR 2007	1	Ŗ	S	5	5	NF	Ä	Ę	. 5	5	5	Ϋ́Ε	Ä	5	
FF 2007	'	15	36	18	22	6	15	12	18	16	12	18	47	13	,
DR 2008	Ä	NF.	5	5	S	5	NF	Ϋ́	5	5	5	Ż	NF.	2	1
FF 2008	63	14	17	9	9	7	2	QZ.	9	7	00	15	9	9	;
DR 2009	£	NF	ΩN	S.	ΩŽ	10	N.	Ę	ND	ND	N ON	ŁZ	Ŗ	Q	1
FF 2009	42	33	8	9	7	21	7	14	9	10	QN	25	QN	6	QN
SpR 2010	NF.	NF	ND	ND	QN	N ON	NF	NF	ND	ND	Q	ŊŁ	NF	QN.	Ė
SuR 2010	Ŗ	NF	ND	ND	ND	ND	NF	NF	ND	ND	ON	NF	5	N	ž
DR 2010	NF	Ŗ	ND	1	1	ND	NF	83	QN	ND	ND	NF	NF	Q	ż
FF 2010	34	28	44	22	6	6	11	8	11	3	9	22	8	11	R
SpR 2011	Ŕ	ND	ND	ND	ND	ND	NF	ND	ND	ND	ND	ND	NF	ND	Ä
SuR 2011	NF	NF	QX	ND	ND	ND	NF	9	ΩN	ND	QN	NF	NF	ND	Ż
DR 2011	Ŕ	Ŋ.	ΩN	ND	ND	NF	RF	NF	R	RF	R	N Q	Z.	ND	Ķ
FF 2011	17	16	ND	22	13	14	13	Ľ	20	30	7	09	26	19	2
SpR 2012	ŊŖ	NF	ΩN	ND	QN	NS	SN	QN	QN	ΩN	Q.	ŊĘ.	RF	ND	Ľ
SuR 2012	Z.	Ŗ	ND	Ω	£	R	NF	NF	<u>Q</u>	NF	Q	NF	Q	ND	ŊĻ
Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's	Pico	4th Avenue	Ocean	8th Avenue	Crossroads

MBAS Detergents

Comparison of MBAS surfactant results for MRSWMP monitoring reported in mg/L. Shaded boxes indicate that the Basin Plan Water Quality Objective of 0.2 mg/L was exceeded; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring.


	FF	DR	FF	DR	FF	DR	मृत	DR	SuR	SF	FF	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013
Pajaro	0.44	NF	0.77	NF	0.21	NF	0.52	NF	NF	ND	1.12	ΡΉ
Bay St	1.13	Ŗ	0.51	ΝĘ	0.30	ŊF	0.77	NF	NF	ND	1.44	Ŗ
Twin 51's	1.51	0.16	0.33	0.14	0.33	1.06	0.55	0.08	0.1	ND	0.31	0.05
San Carlos	1.54	NF	0.33	NF	0.29	ŊŁ	0.94	NF	NF	ND	1.04	Ŗ
Steinbeck	0.71	NF	0.43	NF	0.36	NF	0.53	0.16	90.0	ND	0.42	Ä
HopkinsMon	1.12	0.59	0.50	NF	1	•	-	;	:	ŀ	•	ı
HopkinsPG	1.08	NF	0.51	NF	:	1	,	1	1	1	1	:
8th Street	1.10	NF	0.43	NF	-	+	+	;	ŀ	•	ł	١
Greenwood	0.99	60.0	0.38	0.08	0.32	0.95	0.84	0.27	ND	NS	0.52	ND
Lover's	09.0	NF	0.38	NF	0.25	NF	1.30	NF	NF	NS	0.65	NF
Pico	0.51	0.08	0.43	0.08	0.51	0.14	1.00	QN	90.0	ND	0.55	90.0
4th Avenue	1.20	NF	0.37	NF	0:30	NF	-	1	NF	NS	NS	NF
Ocean	08.0	ŊF	0.45	NF	0.26	NF	•	+	NF	NS	1.6	NF
8th Avenue	0.99	0.14	0.50	NF	0.33	NF		1	NF	NS	SN	Q
Crossroads	0.47	占	0.55	NF	0.22	NF	0.39	NF	NF	ND	0.43	NF

Nitrate as N

Comparison of nitrate as N (NO3-N) results for 2006-2014 MRSWMP monitoring reported in mg-N/L. Shaded boxes indicate that the Basin Plan Objective of 2.25 mg-N/L was exceeded; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring. The table below is broken into two sections to facilitate printing.

DR	2012	Ę	NF	0.73	Ä.	0.78	NS	Z.F.	岩	2.09	N.	1.91	Ä	Z,	N.F.	岩
	+	4		\vdash	_		_	_	_	\vdash	<u> </u>	<u> </u>			_	Н
भिष	2012	0.47	0.74	0.44	SN	2.67	SN	SZ	SZ	0.79	0.59	1.13	0.43	0.51	SZ	0.59
SF	2013	9.0	1.0	0.2	SN	9.0	SN	SN	SN	SN	SN	0.3	SN	SN	SN	0.05
SuR	2013	Ż	NF	ΩN	9.1	3.6	1.2	Ŗ	Ŕ	1.4	NF	1.7	NF.	NF	2.5	臣
DR	2013	NF	NF	0.8	NF	NF		ł	**	1.0	NF	2.2	NF	NF	2.2	NF
FF	2013	1.2	1.4	0.7	6.0	1.3	;	1	:	1.0	1.0	9.0	NS	1.8	NS	0.5
SF	2014	0.2	0.2	0.2	0.2	0.2	-	-	-	NS	NS	ND	SN	NS	NS	Ð
SuR	2014	Ä	NF	0.3	NF	1.7	-	ŀ	-	8.0	NF	1.9	NF	NF	NF	Ķ
DR	2014	ż	NF	0.3	NF	0.4	1	1	-	6.0	NF	2.4	-	-	1	NF
FF.	2014	0.5	0.4	0.7	9.0	1.1	:	-	-	0.7	0.7	0.7	1	1	1	0.3
DR	2015	ż	Ė	1.5	Ŋ.	Ä	1	1	-	1.4	뉟	0.0	Ŗ	Ŗ	Ż	ź
FF.	2015	0.35	0.45	0.45	0:30	0.55	ŀ	:	!	0.45	0.25	0.35	09:0	0.45	0.55	0.20
DR.	2010	ż	ΝF	0.40	NF	1.10	ХF	NF	NF	ΝF	Z.	0.00	NF	NF	NF	Ŗ
FF.	20102	6.0	0.3	0.3	0.3	0.5	0.4	6.0	0.4	0.2	0.2	0.2	0.5	0.3	0.3	0.2
DR	7107	ż	NF	0.5	NF	NF.	0.5	NF	NF	1.1	Z,	6.0	Ŗ	ŊŁ	Ð	Ż
FF	/IN7	6.23	0.83	99.0	0.53	2.78	0.59	0.53	0.41	0.37	0.47	0.39	0.15	99.0	0.72	0.30
Cito Momo	Site Marine	rajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's	Pico	4th Avenue	Ocean	8th Avenue	Crossroads

Nitrate as N continued

8

Orthophosphate as P

Comparison of orthophosphate as P results for MRSWMP monitoring reported as mg-P/L. Shaded boxes indicate that the Basin Plan Objective of 0.12 mg-P/L was exceeded; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring. The table below is broken into two sections to facilitate printing.

								DR 2014	SuR 2014	SF 2014	FF 2013	DR 2013	SuR 2013	SF 2013	FF 2012	DR 2012
	0.62		6.0	18	0.2	ż	0.4	NF	NF	0.20	0.70	NF	NF	0.10	0.46	NF
	0.27		0.4		0.2		0.2	NF	NF	0.10	0.40	NF	NF	ND	0.23	NF.
10000	06.0	0.32	0.4	0.3	0.4	1.2	0.5	ND	ND	0.20	0.40	ND	0.20	0.10	0.31	0.11
Name of the least	0.49		0.3	100	0.2	-	0.3	NF	NF	ND	0.40	NF	ND	NS	NS	Ŗ
	2.54	N	1.2	100	1.4		2.8	0.2	01.0	0.50	4.20	NF	0.40	0.50	1.82	0.14
	0.74	0.16	0.3					ŀ	ŀ	:	ı	-	ND	NS	SN	NS
Parket.	19.0	2	6.0		Î		N	1	1	1	-	1	NF	NS	SN	NS
	0.55	2	0.4				L	1	i	:	ł	ł	ŊĘ	NS	NS	NF
-	0.48	9	0.4	- SNo	0.7	N. S.	8.0	Ð	ND	NS	0.70	ND	0.30	NS	0.37	0.13
	1.66	ij	0.5	J.	0.3		8.0	NF.	Ä	SN	1.10	NF	NF	NS	0.63	NF
ĺ	0.64	2	0.5	750	0.7	1	1.0	ND	ΩN	0.10	06.0	ND ND	QN	ND	0.41	ND
2	09.0		1.0		9.0		ĺ	;	Ä	NS	NS	NF	ŊF	NS	0.19	NF
	1.15		0.7	4	0.4			}	Ŗ	NS	2.00	NF	NF	NS	0.67	NF
3	1.23	0.20	1.1		9.0			!	Ŗ	NS	NS	Q.	ND	NS	SN	NF
	0.38	- 37	0.2			i e	0.3	NF	N.	Ð	0.20	NF	占	QN.	0.37	NF.

Orthophosphate as P continued

DR	2006	1	Ϋ́	0.35	QN.	0.38	N.	;	Ŗ	ND	NF	<u>R</u>	1	1	1	6
मुन	2006	1					2.37	+			1.38	0.44	1	1		;
DR	2007	ţ	NF	S	R	0.00	Ä	Ä	Ż	0.07	R	QN	NF	NF	QN	}
, H.H.	2007	1	0.00												0.99	1
DR	2008	NF	NF					NF	NF			0.20	NF.	NF		1
되	2008	0.50							0.90	1.40						8
DR	2009		NF					NF	NF	0.10	0.10	0.10	Ŋ.	NF		ĸ
전	2009						0.34	1.60								0.31
SpR	2010	N.	Ν̈́		0.19			NF	NF				NF	NF		NF
SuR	2010	NF	NF		0.10		0.10	NF	RF			0.05	NF		S	NF
DR	2010	NF	Ę	N N			0.11	NF		0.08	0.12	ND	NF	NF	QN	NF
낸	2010	0.38	0.34	0.94			09.0	1.79						1.18		0.64
SpR	2011	Z	N	0.11	0.15	0.10	ND	Ŗ	0.12	0.10		Q	QN.	Ė	ND	Ŗ
SuR	2011	NF	NF	NF	ND	ND	ND	NF	ND	ND	ND	ND	NF.	ŊĘ.	1.44	Ŗ
DR	2011	NF	NF	0.00	ND	ND	NF	NF	NF	ND	NF	ND	2	NF	ND	NF
FF	2011								NF							
SpR	2012	Z F	NF	0.11	0.10		NS	NS	0.21	0.10	0.13	0.10	K	Ŗ	0.10	Ŗ
SuR	2012	Z,	Ÿ	0.13	S		ND	NF	ŊŢ	QN	NF	Q.	岂	0.19	R	NF
	Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's	Pico	4th Avenue	Ocean	8th Avenue	Crossroads

Potassium

Comparison of potassium results for MRSWMP monitoring reported as mg/L. Shaded boxes indicate that the General Permit Action Level of 20 mg/L was exceeded; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring.

	- 35				_											
DR	2013	NF	ΝF	6.9	Ŗ	Ŗ	ŀ			6.4	ΝF	5.1	ŊF	NF	1.6	NF
FF	2013	6	∞	6	7	12	1	:		13	14	12	SN	16	SN	3
SF	2014	2.5	1.3	1.5	1.3	1.4	1	1	1	NS	NS	2.6	SN	NS	SN	8.0
SuR	2014	NF	Ä	11	ΝF	4.1	,	1	1	9.9	NF	5.5	NF	NF	NF	NF
DR	2014	NF	Ŗ	18.0	Ŗ	4.2	:	1	:	6.7	NF	5.9		1		NF
FF	2014	4.6	3.0	5.4	5.2	8.9	1	1	ŀ	9.9	6.2	10.5	-	1	:	2.5
DR	2015	NF	NF	∞	Ż	ŊŁ	1	1	1	5.1	NF	5.2	NF	NF	NF	NF
FF	2015	3.8	4.0	5.2	3.0	5.5	1	- 1	1	7.5	4.2	14.0	9.5	5.1	8.2	1.5
DR	2016	NF	NF	8.3	NF	NF	NF	NF	NF	7.3	NF	4.6	NF	NF	NF	NF.
FF	2016	8.5	2.8	3.5	2.5	4.1	4.4	5.4	3.8	4.0	4.5	7.4	11.3	6.3	-10.0	1.9
DR	2017	NF	NF	10	NF	NF	15	NF	NF	10	NF	9	NF	NF	9	NF
FF	2017	5.0	55.0	5.0	4.0	8.0	5.0	5.0	6.0	5.0	6.0	6.0	12.0	7.0	8.0	2.0
	Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th Street	Greenwood	Lover's	Pico	4th Ave.	Ocean Ave.	8th Ave	Crossroads

Total Suspended Solids (TSS)

Comparison of Total Suspended Solids (TSS) results for MRSWMP monitoring reported in mg/L. Shaded boxes indicate that the CCAMP Action Level of 500 mg/L was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; — = Not included in MRSWMP monitoring. The table below is broken into two sections to facilitate printing.

	FF	DR	ЯH	DR	FF	DR	FF	DR	SuR	SF	FF	DR	SuR	SF	ЯH	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013	2013	2013	2012	2012
Pajaro	652	NF	111	NF	191	NF	152	NF	NF	244	132	NF	NF	276	140	NF
Bay St	82	ŊF	32	NF	35	Ŗ	173	NF	ΝF	33	99	Ŗ	Ŗ	63	33	ZF
Twin 51's	96	4	28	2	59	3	73	ND	ND	14	69	3	9	19	74	ND
San Carlos	54	NF	9	NF	25	NF	16	NF	NF	44	13	NF	3	SN	SN	NF
Steinbeck	38	NF	7	NF	24	NF	84	ND	ND	34	21	NF	4	«	30	7
HopkinsMon	46	10	7	NF	:	1	1	+	1	1	;	;	35	NS	NS	SZ
HopkinsPG	48	NF	6	NF	:	1	1	}	1	1	-	1	NF	SN	SN	SZ
8th St	71	NF	7	NF	l l	t	ł	!	!	1	ŀ	ij	NF	NS	NS	NF
Greenwood	178	2	12	2	50	9	59	3	8	NS	36	4	3	SN	17	2
Lover's	29	NF	20	NF	20	Ŗ	33	NF	Ŗ	NS	11	ŊF	NF	SN	21	NF
Pico	41	ND	14	ND	61	ND	27	ND	ND	89	32	ND	2	12	10	ND
4th Ave.	129	NF	96	NF	312	Ŗ	ł	:	NF	NS	NS	Ŋ.	NF	NS	139	ΝΈ
Ocean Ave.	22	NF	18	NF	62	NF	ł	1	NF	NS	20	NF	NF	NS	57	NF
8th Ave	26	4	36	NF	101	ŊĖ	Ł	:	ŊŁ	NS	SN	ND	ND	NS	NS	Ä
Crossroads	9	NF	9	NF	20	NF	12	NF	Ŗ	20	7	Ė	Ŗ	5	11	Ŕ

Total Suspended Solids (TSS) continued

_		_	-	_	_	_		,	ļ							
DR	2006	1	NF	2	QN	12	Z.	1		33	NF	QN	1			
FF	2006	;	3	41	46	14	29	1	39	23	24	40		1	1	
DR	2007	1	NF.	3	3080	4	Ϋ́Ε	ΝF	ŊŖ	3	5	5	ŊĘ.	Ę	4	
FF	2007	1	38	137	47	99	36	43	75	7.1	35	98	103	59	89	
DR	2008	NF	NF	s	5	∞	12	Ä	Ė	14	1.9	QX	Ŗ	NF	5	
FF	2008	743	99	74	32	49	34	25	15	19	25	45	116	34	20	
DR	2009	42	NF.	9	ND	8	51	NF	NF	0	ΩN	QN	NF	NF	QN	Z Z
FF	2009	270	123	44	22	89	901	45	31	09	52	20	121	28	57	21
SpR	2010	NF	NF	ND	ND	ND	4	NF	NF	0	ND	ND	NF	Ä	ND	Ę
SuR	2010	NF	NF	5	ND	ND	8	NF	NF	9	ND	9	Ŋ.	45	ND	NF
DR	2010	NF	NF	61	3	6	ND	NF	188	5	3	ND	NF	NF	3	NF.
77	2010	348	173	183	69	56	30	82	26	50	20	36	212	42	36	15.
SpR	2011	NF	ND	ND	ND	ND	ND	NF	QN	7	12	ND	ND	NF	ND	N.
SuR	2011	NF	NF	ND	ND	ND	8	NF	20	ND	6	ND	NF	NF	ND	Ę
DR	2011	NF	NF	ND	QΝ	₽ P	NF	NF	Z	ON	NF	ND	ND ND	NF	QN	R
FF	2011	230	59	15	100	88	57	75	Ž	174	118	57	557	292	66	=
SpR	2012	ŊŁ	N.F.	ND	ND	2	SN	SN	7,	4	QN	ND	NF	NF	ND	Ä
SuR	2012	NF	Ę	QX	QN	18	S	Ŗ	NF	QN	NF	QN.	ΝΉ	14	QN	Ä
	Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	Stn St	Greenwood	Lover's	Pico	4th Ave.	Ocean Ave.	8th Ave	Crossroads

Turbidity

Comparison of turbidity results for MRSWMP monitoring reported in NTU. Shaded boxes indicate that the CCRWQCB Action Level of 25 NTU was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring.

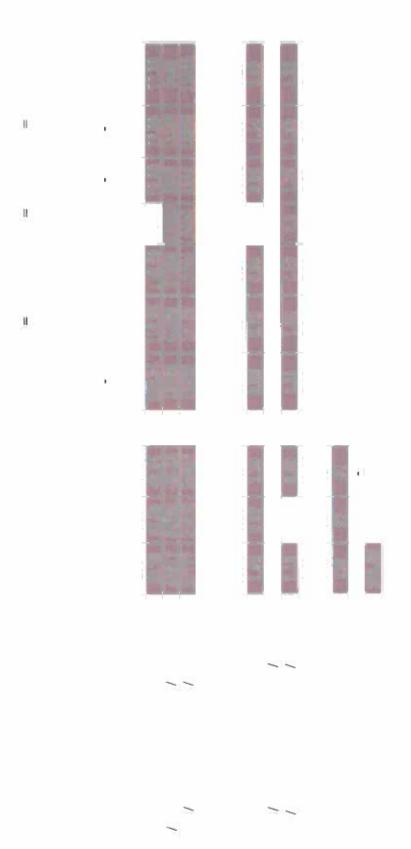
	FF	DR	FF	DR	FF	DR	FF	DR	SuR	SF	FF	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013
Pajaro	909	NF	2.3	NF	140.0	NF	140.0	NF	NF	120.0	175.0	NF
Bay St	69	NF	12.3	NF	19.0	NF	41.0	NF	NF	20.0	40.0	NF
Twin 51's	52	3.8	16.5	6.1	33.0	3.4	21.0	2.0	9.1	12.0	50.0	3.8
San Carlos	57	NF	5.2	NF	14.0	NF	37.0	NF	NF	16.0	17.3	NF
Steinbeck	39	NF	5.0	NF	14.0	NF	32.0	0.7	0.7	16.0	13.0	NF
HopkinsMon	44	5.3	4.4	NF	1		1		1	+		1
HopkinsPG	50	NF	3.9	NF	-	:	-	-	:	-	1	ŀ
8th St	40	NF	4.6	NF	-		•	-	1	:	1	1
Greenwood	71	4.7	10.1	4.5	25.0	5.0	25.0	4.0	2.1	NS	24.0	1.5
Lover's	30	NF	12.3	NF	10.0	NF	20.0	NF	NF	NS	7.1	NF
Pico	28	6.7	7.9	10.0	32.0	3.3	21.0	7.2	2.1	18.0	18.0	3.0
4th Ave.	16	NF	44.5	NF	103.0	NF	**	+	NF	NS	NS	NF
Ocean Ave.	20	NF	21.5	NF	14.0	NF	1		NF	NS	24.0	NF
8th Ave	19	10.0	11.0	NF	26.0	NF	140		NF	NS	NS	1.1
Crossroads	19	NF	4.7	NF	0.6	NF	12.0	NF	Ν̈́	13.0	7.0	ЯÄ

- 1

Urea continued

	SuR	SpR	년	DR	SuR	SpR	मन	DR	SuR	SpR	मृत	DR	FF	DR	नुस	DR	저	DR
Site Name	2012	2012	2011	2011	2011	2011	2010	2010	2010	2010	2009	5009	2008	2008	2007	2007	2006	2006
Pajaro	Ė	Ŋ	44	Ä	Ϋ́Z	Ŗ	609	NF	NF	NF	241	74	86	ΝΉ	ŀ	1	;	1
Bay St	Ë	NF	143	NF	NF	ND	284	NF	NF	NF	62	NF	108	Ŗ	205	Ŗ	09	ЙF
Twin 51's	87	61	179	35	53	91	520	21	16	258	920	250	753	45	999	116	724	53
San Carlos	QN	5	73	ND	10	ND	326	878	15	10	331	ND	336	15	440	35	370	13
Steinbeck	127	5	393	30	42	ND	2234	11	10	213	1547	11	740	-	1965	1028	4777	152
HopkinsMon	S	SN	55	NF	30	ND	160	ND	ND	36	456	193	38	173	2495	NF	3263	Z FZ
HopkinsPG	ż	SN	378	NF	NF	NF	1628	NF	NF	NF	1671	NF	840	Ŗ	275	NF	ŀ	1
8th St	NF	1861	NF	NF	83	ND	192	389	Z	Ŗ	141	N.F.	267	Ŗ	210	NF	139	Į,
Greenwood	=	5	168	12	44	70	280	5	636	31	120	14	470	71	455	428	348	485
Lover's	ZF.	57	26	NF	12	ND	54	5	ND	13	118	20	41	57	320	23	217	Ν̈́F
Pico	Q	5	25	ND	10	20	96	5	24	13	35	15	104	69	240	10	150	ΩN
4th Ave.	Ŗ	Ŗ	46	ND	NF	ND	225	NF		NF	393	NF	84	Ė	195	Ŗ	ł	1
Ocean Ave.	31	Ŗ	47	NF	NF	NF	417	NF	400	NF	105	NF	250	Ė	280	NF	ł	1
8th Ave	QN	5	547	ND	10	ND	426	ND	ND	ND	419	QN	331	10	345	10	1	١
Crossroads	NF	NF	52	Ϋ́	NF	Ę	519	ХF	Ŗ	岂	321	NF.	1	ł	1	!	1	1

Zinc


Comparison of total zinc results for MRSWMP monitoring reported in µg/L. Shaded boxes indicate that the Basin Plan Objective of 200 µg/L was exceeded; NA= Not Analyzed; ND= Non-detect; NF= No Flow; NS= Not Sampled; -- = Not included in MRSWMP monitoring. The table below is broken into two sections to facilitate printing.

	FF	DR	Ā	DR	FF	DR	FF	DR	SuR	SF	Ā	DR	SuR	SF	FF	DR
Site Name	2017	2017	2016	2016	2015	2015	2014	2014	2014	2014	2013	2013	2013	2013	2012	2012
Pajaro	424	NF	317	NF	167	NF	231	NF	NF	264	297	Ŗ	ŊŁ	182	198	NF
Bay St	136	Ė	138	NF	141	NF	703	NF	NF	119	402	Ŗ	ΝF	187	94	岩
Twin 51's	220	17	93	56	167	114	513	313	48	58	504	93	46	70	147	28
San Carlos	157	Z.	92	NF	118	NF	692	NF	NF	96	269	NF	36	SN	SN	Ä
Steinbeck	249	NF	149	NF	170	NF	764	53	25	112	293	Ł	43	158	392	38
HopkinsMon	142	106	112	NF	ł	-	1	;	ŀ	:	1		8	SN	SS	SN
HopkinsPG	136	NF	189	ЪF	1	;	:	1	:	1	;	1	ЯŖ	SN	SN	SN
8th St	121	ŊĖ	74	NF	-		1	;		1	;		Ŗ	SZ	NS	ż
Greenwood	180	13	93	ND	129	QN	410	09	48	SZ	263	20	14	SZ	102	QN
Lover's Pt	107	NF	80	NF.	87	NF	406	NF	NF	NS	204	N.	NF	SZ	114	Ŗ
Pico	92	ND	68	23	150	ND	144	39	QN	63	129	37	ND	70	58	21
4th Avenue	198	ŊŁ	133	NF	148	NF	1	-	NF	SZ	SN	ż	NF	NS	145	Ä
)cean	194	NF	144	NF	106	NF	-	1	Ż	SZ	395	Ä	ΝΉ	NS	203	Ν̈́F
8th Avenue	111	71	125	NF	169	NF		1	NF	NS	SZ	24	92	SN	NS	N.
Crossroads	130	NF	134	NF	78	Ż	229	NF	NF	81	185	NF	NF	79	211	Ŗ

Zinc continued

		-				55 B	_			_					_	
DR	2006	1	Ŗ	ΩN	QN	ND	Ŗ	}		27	Ŗ	ND	1	1	1	1
ЯH	2006	1	33	295	342	411	307	}	153	180	158	142	1	1	;	1
DR	2007	1	Ŗ	25	10	130	NF.	NF	Ŗ	11	13	10	NF	NF	19	1
FF	2007	ŧ	185	330	269	384	382	231	173	236	175	154	170	361	303	1
DR	2008	NF	Ŗ	28	18	110	66	NF	NF	35	10	12	NF.	NF	20	}
मुन	2008	368	124	273	157	347	194	305	121	156	123	96	116	225	237	}
DR	2009	41	NF	29	19	196	234	NF	NF	ND	ND	ND	NF	NF	19	NF
4A	2009	273	345	313	213	400	341	477	147	167	166	87	226	288	256	303
SpR	2010	NF	NF	20	25	40	35	NF	NF	14	14	11	NF	NF	17	ЫF
SuR	2010	NF	NF	52	28	29	22	NF	NF	QΝ	ΩN	16	NF	439	14	JN
DR	2010	NF	NF	46	28	31	24	NF	267	5	5	17	NF	NF	15	NF
मृप	2010	351	272	385	351	808	322	945	156	232	9	139	195	650	344	330
SpR	2011	NF	22	25	67	62	24	NF	15	12	36	34	104	NF	ND	NF
SuR	2011	NF	NF	25	29	31	36	NF	88	16	16	11	NF	NF	61	NF
DR	2011	NF	NF	20	11	61	NF	ЫN	NF	QΝ	NF	ND	11	JN	20	NF
FF	2011	170	219	142	264	258	138	166	NF	300	182	98	312	354	214	62
SpR	2012	NF	NF	40	43	09	SZ	SN	22	21	14	12	Ŗ	NF	56	Ϋ́F
SuR	2012	NF	NF	ND	ND	21	£	NF	NF.	ND	NF	QN	Ŗ	86	S	Ŗ
į	Site Name	Pajaro	Bay St	Twin 51's	San Carlos	Steinbeck	HopkinsMon	HopkinsPG	8th St	Greenwood	Lover's Pt	Pico	4th Avenue	Ocean	8th Avenue	Crossroads

Appendix 3: Results by Jurisdiction (listed alphabetically)

Monterey 2017 MRSWMP monitoring results.

Table results include the Dry Run (DR), First Flush time series (FF-A and FF-B) and FF results averaged for the two time series (FF-Avg). Shaded boxes indicate that a Water Quality Objective (WQO) or Action Level was exceeded. ND= Non-detect; NF= No Flow; -- = Not included in MRSWMP monitoring.

	WQO or Action		Ţ	Twins			San	San Carlos			Ste	Steinbeck	
Analytes	Level	DR	FF- A	FF - B	FF Avg	DR	FF- A	FF - B	FF Avg	DR	FF- A	FF - B	FF Avg
Ammonia (mg/L)	50 mg/L	6.0	0.7	1.13	0.92	NF	0.43	0.50	0.47	Ä	9	3.25	4.63
Color (Color Units)	500 color units	14	150	350	250	ŊĘ	250	250	250	NF	250	150	200
Copper (ug/L)	30 ug/L	19	70.42	59.05	64.73	NF	69.35	74.33	71.84	岂	391.89	606.71	499.30
E. coli (MPN/100 ml)	235 MPN/ 100 ml	1610	4798	13735	9267	Ŗ	2908	14387	10148	Ė	19179	22818	20999
Enterococcus	104 MPN/ 100 ml	7.7	90206	17053	12500	Ä	7700	14207	10001	į	10001	truck.	47000
Fluoride (mo/I.)	None currently	7 0	0.12	0000	0.10		0000	0 11	000	<u>L</u>	10 C	0.10	4550
Hordness ma/l	10 and >2000	420	60 63	47.07	54.05		E 6 A7	11.17	27.5	1,1	21.0	27.00	20.00
rialuicss iiig/L	STO ATIC 72000 IIIB/L	477	02.03	10./4	24.75		20.47	/1.11	03.79	Į.	50.08	/0.98	65.23
Lead (ug/L)	30 ng/L	Q	18.47	12.13	15.30	NF	9.83	6.36	8.10	Ä	5.15	4.90	5.02
MBAS Surfactants	0.2 mg/L	0.16	.85		1.51	NF	1.			岂	0.61	08.0	0.
NO3-N (mg-N/L)	2.25 mg-N/ L	0.5	0.69	0.64	99.0	Ŗ	0.46	09.0	0.53	岂		1.57	2.
PO4-P (mg-P/L)	0.12 mg-P/L				06.0	岩	0.48		0.4	Ė		1.97	2.54
Potassium (mg/L)	20 mg/ L	10	4.60	5.72	5.16	Ä	3.98	4.52	4.25	Ė	96.9	69.6	8.32
TSS (mg/L)	500 mg/L	4	132	09	96	Ŗ	001	27	54	Ė	34	42	38
Turbidity (NTU)	25 NTU	3.8		4	52	Ė	09			岂	37	41	39
Urea (ug/L)	None currently	139	ND		mem	NF	ND	1		Ë	QN	0 0	;
Zinc (ug/L)	200 ng/L	17		192.92	220.40	Ϋ́	172.47	141.64	157.06	Ż		287.09	248.88

Monterey County 2017 MRSWMP monitoring results.

Table results include the Dry Run (DR), First Flush time series (FF A and FF B) and FF results averaged for the two time series (FF Avg). Shaded boxes indicate that a Water Quality Objective (WQO) or Action Level was exceeded. ND Non-detect; NF No Flow, -- Not included in MRSWMP monitoring.

			P	Pajaro			Cros	Crossroads	
Analytes	WQO or Action Level	DR	FF- A	FF-B	FF-Avg	DR	FF- A	FF-B	FF-Avg
Ammonia (mg/L)	50 mg/L	NF	0.72	0.30	0.51	NF	0.29	0.28	0.29
Color (Color Units)	500 color units	NF	1750	500	1125	NE	11650000	250	300
Copper (ug/L)	30 ng/L	NF	88.00	70.67	#916#	NF	17.69	12.28	14.98
E. coli (MPN/ 100 ml)	235 MPN/ 100 ml	NF	20122	10101	15112	NF	098	626	743
Enterococcus (MPN/ 100 ml)	104 MPN/ 100 ml	NF	77010	34411	55711	NF	5371	4412	4892
Fluoride (mg/L)	None currently	NF	0.54	0.14	0.34	NF	90.0	0.06	0.06
Hardness mg/L	<10 and >2000 mg/L	NF	134.49	72.23	103.36	NF	12.91	15.03	13.97
Lead (ug/L)	30 ng/L	NF	32.79	30.43	31.61	NF	1.43	1.33	1.38
MBAS Surfactants (mg/L)	0.2 mg/L	NF	0.38	0.50	0.44	NF	0.40	0.53	0.47
NO3-N (mg-N/L)	2.25 mg-N/ L	NF	0.74	0.31	0.53	NF	0.28	0.31	0.30
PO4-P (mg-P/ L)	0.12 mg-P/ L	NF	0.78	0.50	0.62	NF	0.38	0.37	0.38
Potassium (mg/L)	20 mg/ L	NF	6.35	4.31	5.33	NF	1.44	1.50	1.47
TSS (mg/L)	500 mg/L	NF	496	808	652	NF	9	9	9
Turbidity (NTU)	25 NTU	NF	732	479	605.5	NF	19	19	19
Urea (ug/L)	None currently	NF	434	;	-	NF	150	:	1
Zinc (ug/L)	200 ng/L	NF	458.01	390.79	424.40	NF	122.91	137.96	130.43

Pacific Grove 2017 MRSWMP Monitoring results.

Table results include the Dry Run (DR), First Flush time series (FF-A and FF-B) and FF results averaged for the two time series (FF-Avg). Shaded boxes indicate that a Water Quality Objective (WQO) or Action Level was exceeded. ND= Non-detect; NF= No Flow; -- = Not included in MRSWMP monitoring.

				83									
	WQO or Action		Hopki	HopkinsMon			Hop	HopkinsPG			S C	8th Street	
Analytes	Level	DR	FF- A	FF-B	FF Ave	DR	FF- A	FF - B	FF Ave	DR	FF- A	FF - B	FF Ave
Ammonia (mg/L)	50 mg/L	1.1	1.52	0.43	0.98	NF	0.45	}	-	Ŗ	0.37	0.45	0.41
Color (Color Units)	500 color units	100	150	150	150	NF	200	;	:	ŊŁ	200	150	175
Copper (ug/L)	30 ng/L	32	49.99	54.33	52.16	NF	52.26	-	;	岂	36.53	48.91	42.72
E. coli (MPN/100 ml)	235 MPN/ 100 ml	242000	2334	48844	25589	Ŗ	29093	1	+	岩	18501	48844	33673
Enterococcus													
(MPN/100 ml)	104 MPN/ 100 ml	300	5940	22236	14088	NF	21425	1	•	Ä	41058	111987	76523
Fluoride (mg/L)	None currently	0.5	90.0	0.12	0.09	NF	0.10	1	1	Ë	0.10	0.09	0.10
Hardness mg/L	<10 and >2000 mg/L	626	45.48	62.96	54.22	NF	48.38	:	1	Ŗ	154.41	48.50	101.45
Lead (ug/L)	30 ng/L	2	11.43	4.62	8.02	NF	6.05	1	1	ZF.	8.60	68.6	9.25
MBAS Surfactants	0.2 mg/L	0.59	1.20	1.04	1.12	NF	1.08	-	1	岂	0.99	1.20	1.10
NO3-N (mg-N/L)	2.25 mg-N/L	0.5	0.57	0.61	0.59	NF	0.53	1	ŧ	Ė	0.38	0.44	0.41
PO4-P (mg-P/L)	0.12 mg-P/ L	0.16	0.89	0.58	0.74	NF	0.61	;	1	Ė	0.50	0.61	0.55
Potassium (mg/L)	20 mg/ L	15	4.92	5.63	5.27	NF	5.25	:	:	出	6.03	4.90	5.46
TSS (mg/L)	500 mg/L	10	99	26	46	NF	48	1	1	Ä	59	83	71
Turbidity (NTU)	25 NTU	5.3	42	46	44	NF	50	1	1	Ŕ	38	41	40
Urea (ug/L)	None currently	95	754	**	!	NF	278	;	:	NF	280	1	1
Zinc (ug/L)	200 ng/L	106	168.99	115.36	142.18	NF	135.90		;	Ė	96.67	145.90	121.29

Pacific Grove 2017 MR WMP Monitoring results continued

	FF	Ave	0.29	225	27.11	7 21		7 80	0.08	39.17	5.49		0.39	0.	6.14	41			92.14
00	FF -	В	0.28	200	21.83			7136	0.08	41.89	3.95		0.41		6.05	30	27	8 0	64 56
Pico		FF- A	0.29	250					0.08	36.45	7.03		0.37		6.24	52	29	140	119 72
		DR	ND	09	00				0.1	223	ND	0.08	6.0	ND	9	ND	6.7	15	S
:		FF Ave	0.39	175	46.73				0.11	56.61	6.07		0.47	1.66	6.15	29		1	107 18
Lovers		FF - B	0.37	200					0.12	69.79	5.68		0.48	1.84	6.48	25	25	-	101 97
Γ_0		FF- A	0.41	150					0.10	45.53	6.47	0.64	0.47		5.82	32	34	249	112 40
		DR	NF	NF	N.	ZF		NF	NF	NF	NF	NF	ZF	ZŁ	NF	NF	NF	NF	NF
		FF Ave	0.41	250					0.08	46.14	14.75	0.99	0.37		4.75	178	71	-	180 19
od Park		FF - B	0.38	350					0.08	36.50	9.65		0.35		4.54	80		***	129 09
Greenwood Park		FF-A	0.43	150	49.91				0.07	55.78	19.85		0.38		4.96	276	97	177	
		DR	R	40	10				0.3	456	ND	0.09	1.1	QN	10	2	4.7	124	13
WQO or Action	Level		50 mg/L	500 color units	30 ng/L	235 MPN/ 100 ml		104 MPN/ 100 ml	None currently	<10 and >2000 mg/L	30 ng/L	0.2 mg/L	2.25 mg-N/L	0.12 mg-P/ L	20 mg/ L	500 mg/L	25 NTU	None currently	200 ng/L
	Analytes		Ammonia (mg/L)	Color (Color Units)	Copper (ug/L)	E. coli (MPN/100 ml)	Enterococcus	(MPN/100 ml)	Fluoride (mg/L)	Hardness mg/L	Lead (ug/L)	MBAS Surfactants	NO3-N (mg-N/L)	PO4-P (mg-P/L)	Potassium (mg/L)	TSS (mg/L)	Turbidity (NTU)	Urea (ug/L)	Zinc (no/L)

Seaside and Sand City 2017 MRSWMP Monitoring results.

Table results include the Dry Run (DR), First Flush time series (FF-A and FF-B) and FF results averaged for the two time series. Shaded boxes indicate that a Water Quality Objective (WQO) or Action Level was exceeded. ND- Non-detect; NF No Flow; -- Not included in MRSWMP monitoring.

	WQO or Action	Bay Street			
Analytes	Level	Dry	First Flush-	First Flush	FF
		Run	A	- B	Average
Ammonia (mg/L)	50 mg/L	NF	0.96	0.89	0.93
Color (Color Units)	500 color units	NF	250	150	200
Copper (ug/L)	30 ug/L	NF	89.13	73.08	81.11
E. coli (MPN/ 100 ml)	235 MPN/ 100 ml	NF	77010	68667	7283
Enterococcus (MPN/ 100 ml)	104 MPN/ 100 ml	NF	54750	8 644	
Fluoride (mg/L)	None currently	NF	0.40	0.20	0.30
Hardness mg/L	<10 and >2000 mg/L	NF	1098.99	744.90	921.94
Lead (ug/L)	30 ug/L	NF	10.54	11.23	10.89
MBAS Surfactants (mg/L)	0.2 mg/L	NF			
NO3-N (mg-N/L)	2.25 mg-N/ L	NF	0.72	0.93	0.83
PO4-P (mg-P/L)	0.12 mg-P/ L	NF		0. 8	
Potassium (mg/L)	20 mg/ L	NF			
TSS (mg/L)	500 mg/L	NF	85	78	82
Turbidity (NTU)	25 NTU	NF			
Urea (ug/L)	None currently	NF	ND		
Zinc (ug/L)	200 ug/L	NF	146.18	125.34	135.76

Appendix 4: Receiving Water Sampling

Appendix 4. Receiving Water Monitoring

Introduction

The 2016-2017 MRSWMP monitoring program added the collection and analysis of receiving water samples from two sites in Pacific Grove during the First Flush which was continued into the 2017-2018 program. Collecting receiving water samples and discharge samples can provide a more complete understanding of the fate of common urban pollutants once they flow into the ocean during a major rainstorm. Specific receiving water sites were selected based upon ease of sample collection and to compliment previous Areas of Special Biological Significance (ASBS) monitoring that was done at the end of pipe and in receiving water in Pacific Grove. The original plan was for receiving water sampling to be conducted at 8th Street and Lovers, however due to the low flow of the First Flush storm and a concern that the dry weather diversion was still on which would prevent flow from the Lovers outfall, samples were taken instead at 8th Street and HopkinsMon.

Methods

Sample collection protocols were the same as those used for all of the MRSWMP water quality monitoring events. Receiving water samples were collected and analyzed for the same parameters as those for the MRSWMP outfall monitoring (Table 1). Receiving water grab samples are single samples, collected from the ocean as close to the point where the outfall water flowed into the ocean.

All results from this receiving water study are compared to actual receiving water standards established for beneficial uses in the ocean. All Water Quality Objectives and Action Levels and their accompanying sources are listed in Table A1. In cases where the Ocean Plan provided more protection of receiving water quality than those water quality objectives used for end of pipe monitoring, the Ocean Plan water quality objectives are used and noted.

Results

Samples were collected using the same equipment as that used for the Dry Run and First Flush, however no field measurements were collected. The 8th Street and HopkinsMon samples were collected using a bucket from the beach approximately 30 feet from the outfall.

Receiving water results are presented for each site along with that site's average results from First Flush as a comparison. Receiving water samples are from a single grab sample. First Flush average results are from two samples collected 30 minutes apart. Because of safety concerns, receiving water samples were collected by MBNMS and CMSF staff about two hours after the last outfall sample was collected at 8th Street (Pacific Grove) and about 45 minutes after the last sample at HopkinsMon (Pacific Grove).

Table A1: Receiving Water Quality Objectives

Parameter (reporting units)	Water Quality Objectives	Source of Objective	
Ammonia	Not to exceed 50 mg/L	SWRCB NPDES MS4 General Permit	
Color	Not to exceed 500	SWRCB NPDES MS4 General Permit	
Copper (µg/L)	Not to exceed 30	California Ocean Plan 2015	
E. coli (MPN/100ml)	Not to exceed 235 1	EPA Ambient Water Quality Criteria	
Enterococcus (MPN/100ml)	Not to exceed 104	EPA Ambient Water Quality Crite	
Fluoride (mg/L)	NA	NA	
Hardness as CaCO3 (mg/L)	Not less than or = to 10 or greater than or = to 2,000	SWRCB NPDES MS4 General Permit	
Lead (μg/L)	Not to exceed 20	California Ocean Plan 2015	
MBAS Detergents (mg/L)	Not to exceed 0.2	Water Quality Control Plan for the Central Coast	
Nitrate as N (mg/L)	Not to exceed 2.25 ²	Central Coast Ambient Monitoring Program (CCAMP)	
Orthophosphate as P (mg/L)	Not to exceed 0.12 ³	Central Coast Ambient Monitoring Program (CCAMP)	
Potassium (mg/L)	Not to exceed 20	SWRCB NPDES MS4 General Permit	
Total Suspended Solids (TSS) (mg/L)	Not to exceed 500 ⁴	Central Coast Ambient Monitorin Program (CCAMP)	
Turbidity (NTU)	Not to exceed 225	California Ocean Plan 2015	
Urea (µg/L)	NA	NA	
Zinc (µg/L)	Not to exceed 2001	California Ocean Plan 2015	

Environmental Protection Agency, Updated WQO.

Central Coast Ambient Monitoring Program, Pajaro River Watershed Characterization Report 1998, rev 2003.

Williamson, The Establishment of Nutrient Objectives, Sources, Impacts and Best Management Practices for the Pajaro River and Llagas Creek, 1994.

Central Coast Ambient Monitoring Program, Salinas River Watershed Characterization Report 1999, rev. 2000.

8th Street Outfall and Receiving Water Monitoring

The 8th street beach is a small pocket beach with a drainage area of 35 acres. The watershed area is all residential. The 8th Street 2017 outfall and receiving water results are listed in Table A2.

Table A2. 8th Street outfall and receiving water results for First Flush samples.

		Outfall Monitoring		Receiving Water Monitoring	
Parameter	Units	FF Ave	MDL	Result	MDL
Ammonia	mg/L	0.41	0.05	0.20	0.05
Color	color units	175	150	40	6
Copper- total	μg/L	42.72	2.00	ND	2.00
Escherichia coli (E. coli)	MPN/ 100 ml	33,673	100	27,230	100
Enterococcus	MPN/ 100 ml	76,523	100	10,122	100
Fluoride	mg/L	0.10	0.02	0.93	0.02
Hardness	mg/L	101.45	10.00	4513.53	10.00
Lead- total	μg/L	9.25	1.00	ND	1.00
MBAS Detergents	mg/L	1.10	0.20	0.21	0.05
Nitrate as N	mg-N/L	0.41	0.01	0.27	0.01
Orthophosphate as P	mg-P/L	0.55	0.02	0.87	0.02
Potassium	mg/L	5.46	1.00	257.23	20.00
Total Suspended Solids	mg/L	71	2	138	2
Turbidity	NTU	40.00	0.50	10.00	0.05
Urea (single sample)	μg/L	280	8	22	8
Zinc- total	μg/L	121.29	10.00	446 96 1	8.00

Overall constituent concentrations decreased in seawater except fluoride, hardness, orthophosphate, potassium, total suspended solids, and zinc. Hardness and potassium were above the Action Levels, however the ocean contains quite a bit of calcium carbonate and potassium, so much so that calcium and potassium are within the top six constituents in seawater. Bacteria and detergents were still over the Water Quality Objectives (WQO) for receiving water samples, however the concentrations are lower in the receiving water. Zinc concentrations increased over three times in receiving water over what they were in the outfall samples.

HopkinsMon Outfall and Receiving Water Montioring

The HopkinsMon watershed is one of the smaller watersheds in Pacific Grove at 41 acres. The watershed consists of a mix of residential and commercial, with some public land uses (Appendix 1). HopkinsMon 2017 outfall and receiving water results are listed in Table A3.

Table A3. HopkinsMon outfall and receiving water results for First Flush samples.

		Outfall		Receiving Water	
		Monitoring		Monitoring	
Parameter	Units	Result	MDL	Result	MDL
Ammonia	mg/L	0.98	0.05	ND	0.05
Color	color units	150	150	10	6
Copper- total	μg/L	52.16	2.00	43.48	2.00
Escherichia coli (E. coli)	MPN/ 100 ml	25,589	100	1,100	100
Enterococcus	MPN/ 100 ml	14,088	100	413	100
Fluoride	mg/L	0.09	0.02	0.77	0.02
Hardness	mg/L	54.22	10.00	5283.84	10.00
Lead- total	μg/L	8.02	1.00	ND	1.00
MBAS Detergents	mg/L	1.12	0.20	0.06	0.05
Nitrate as N	mg-N/L	0.59	0.01	0.19	0.01
Orthophosphate as P	mg-P/L	0.74	0.02	0.90	0.02
Potassium	mg/L	5.27	1.00	306.40	20.00
Total Suspended Solids	mg/L	46	2	12	2
Turbidity	NTU	44.00	0.50	3.20	0.05
Urea	μg/L	754	8	ND	8
Zinc- total	μg/L	142.18	10.00	308.22	10.00

As with 8th Street, overall constituent concentrations decreased in seawater except hardness and potassium. Hardness and potassium were above the Action Levels, however the ocean contains quite a bit of calcium carbonate and potassium so much so that calcium and potassium were within the top six constituents in seawater. *E. coli* and enterococcus results were over the Water Quality Objectives (WQO) for both end of pipe and receiving water samples.