

MONTEREY REGIONAL STORM WATER MANAGEMENT PROGRAM

SUMMARY DATA ANALYSIS AND GRAPHIC DISPLAY

Jenny Pensky, Pam Krone, Bridget Hoover Monterey Bay National Marine Sanctuary

November 2022

OVERVIEW

The purpose of this review and report is to portray concentration and load data for storm water and dry weather runoff in a way that allows storm water program managers to evaluate the effectiveness of efforts to reduce pollutants entering the Pacific Ocean from storm drains located within the Monterey Regional Storm Water Management Program (MRSWMP) area of responsibility. We base our analysis on monitoring data collected by the volunteer citizen monitoring effort, which is led and organized by staff at the Monterey Bay National Marine Sanctuary. Monitoring of storm water runoff by the MBNMS citizen science program includes both a pre-permit time period from 2000 – 2006, prior to NPDES MS4 Phase II permits ("pre-permit"), the post-permit time period from 2007-2014 ("post-permit Phase I"), and the time period after the first MRSWMP multi-year report, 2015-2021 ("post-permit Phase II"). Please refer to annual MRSWMP monitoring reports for further explanation of protocols and methods for data collection and analysis.

Our results indicate that runoff water quality has generally improved over the last 21 years of MRSWMP monitoring, particularly during storm water runoff ("wet") events. In particular, concentrations of nitrate, copper, lead, and zinc in storm water runoff have decreased significantly since both prior to the NPDES MS4 Phase II permits in 2006 and the last multi-year MRSWMP report in 2015. Additionally, no analyte concentrations in runoff during wet events have significantly increased at any site from 2000-2021. Among the cities that were monitored (Monterey, Pacific Grove, Seaside, Salinas, Carmel, Carmel Valley, and Pajaro), water quality trends were generally similar. Management efforts that likely contributed to the observed water quality improvements include public education and outreach directed towards specific sectors, public involvement in clean-up and sampling, eliminating illicit discharges, developing guidelines and standards for construction runoff, implementing street sweeping, periodically cleaning out storm drains, and assessing sewer line integrity.

Analyte concentrations during wet events were generally higher than those measured during dry weather runoff events. This is likely due to the majority of pollutants entering outfalls during storm water runoff events, and these pollutant concentrations are particularly high since samples were collected during the first major rain event of the season (the "First Flush"). The only major pollutant measured over the MRSWMP monitoring timeframe that was consistently higher during dry weather runoff events was nitrate, likely due to nutrients added to lawns, golf courses, urban public spaces and agricultural lands, primarily during the dry season.

Despite water quality improvements over time, there were still some analytes that consistently exceeded Water Quality Objectives (WQOs). The analytes for which the 85th percentile concentration exceeded the WQO were: *E. Coli*, Enterococci, MBAS, orthophosphate-P, and turbidity for both wet and dry events; copper and zinc for wet events; and nitrate for dry events. Management practices to reduce concentrations of these analytes are recommended to ensure that water quality in the Monterey Bay continues to improve.

The report is broken into five separate analyses described below.

Section I: Comparison of Pre-Permit, Post-Permit Phase I, and Post-Permit Phase II Pollutant Concentrations for MRSWMP Jurisdictions

Our review starts with a comparison of pre-permit, post-permit Phase I, and post-permit Phase II results to discover whether there has been an improvement (or worsening) in pollutant concentrations at storm water outfalls collectively for the MRSWMP region for the years 2000 – 2021. MRSWMP cities with storm drain outfalls that discharge to the ocean or 303d listed waterbody and were sampled over this time period include Monterey and Pacific Grove (2000-2021), Seaside (2004-2021), Carmel (2007-2021), Pajaro (2008-2018), Carmel Valley (2009-2018), and Salinas (2019-2021). For each pollutant (analyte) measured consistently over the MRSWMP monitoring period, box and whisker plots of concentrations during the pre-permit, post-permit Phase I, and post-permit Phase II timeframes in order to visualize how concentrations have changed over time. Additionally, a Wilcoxon Rank-Sum test was performed to determine if there was a statistically significant difference between pre-permit, post-permit Phase I, and post-permit Phase II analyte concentrations. All sites sampled as part of MRSWMP monitoring from 2000-2021 were included in this analysis.

Section II: 85th Percentiles for Pollutants Measured

Based on data collected between 2006-2021 (post-permit Phase I and post-permit Phase II), we developed the 85th percentiles representing the highest 15% of concentrations observed in this time frame. This approach uses the 85th percentile to provide a benchmark for relative comparison between sites and is a practice used in the ASBS program as suggested by the State Water Resources Control Board (SWRCB). Water Quality Objectives for pollutants are also shown so that the 85th percentiles can be compared with concentrations established for aquatic health.

Section III: Trend Analysis of Pollutant Concentrations at Outfalls

A statistical analysis (Mann Kendall test) was performed to assess the existence of trends in concentrations at each outfall that was consistently monitored during wet conditions over all the years of monitoring data (2000-2021). The sites included in this analysis were only in Monterey and Pacific Grove.

Section IV: Instantaneous Load at Outfalls Clustered by City

Instantaneous load for pollutants was plotted at outfalls where both flow and concentration data were available for 2009-2021 for the cities of Carmel, Pacific Grove, and Monterey.

Section V: Plots of Pollutant Concentrations at Outfalls

Pollutant concentration plots were developed for monitoring data collected at each storm water outfall monitored, including pre-permit, post-permit Phase I, and post-permit Phase II monitoring. The plots included the city's 85th percentile, as well as all MRSWMP data 85th percentile for both dry and wet weather and their combined results.

MRSWMP adopted Monterey Bay National Marine Sanctuary (Sanctuary) volunteer water quality monitoring programs in Fall 2007 (Permit Year 2).

- 2007-2008, Permit Year (PY) 2-3 MRSWMP monitoring included a Dry Run, First Flush and two dry weather events using Urban Watch protocols. Twenty-three outfalls >18"
- 2009-2010, PY 4-5 monitoring was adjusted to follow First Flush protocols for both wet and dry weather events (1 wet, 3 dry). Twenty-three outfalls >18"
- 2011, PY 6 monitoring followed First Flush protocols for both wet and dry weather events (2 wet, 2 dry). Twenty-three outfalls >18"
- 2012-2013, PY 7 of 1st Phase II MS4 Permit and PY1 of 2nd Phase II MS4 Permit monitoring followed First Flush protocols for both wet and dry weather events (2 wet, 2 dry). However, the number of outfalls changed to complement the ASBS Special Protection monitoring requirements.
- 2014-2021, PY2 PY9 of 2nd Phase II MS4 Permit followed First Flush protocols for one wet and one dry weather events at the reduced number of outfalls to complement the ASBS Special Protection monitoring requirements.

DEFINITIONS:

Dry Run – Water samples are collected prior to the first major rainstorm of the year. It usually takes place on the Saturday after volunteer training in September. This gives volunteers an opportunity to visit their site in the daylight and collect a dry weather sample for comparison.

First Flush – Water samples are collected during the first major rainstorm of the winter season. We strive for conductivity below 1000 μ S and sheeting rain on the roadway.

Second Flush – Water samples are collected during a late season rainstorm.

Spring/Summer Run - Samples are collected during the dry weather season.

METHODS:

Grab samples were collected at up to 34 storm drain outfalls greater than 18" in diameter that discharge to the ocean or a river. During the First Flush, volunteers collect two or three time series samples. Second Flush and dry weather samples include just one grab sample. Protocols include field measurements for temperature, conductivity, pH and transparency (if sufficient light) and collection of samples to be analyzed in a lab for bacteria (*E. coli* and *Enterococcus*), nutrients (nitrate as N, urea, and orthophosphate as P), total metals (copper, zinc, lead), total suspended solids, and MBAS (surfactants).

WET WEATHER SAMPLE DATES AND PRECIPITATION AMOUNT:

Table 1: Precipitation is shown for wet weather monitoring dates in 2009-2021. The Lover's Point station (KCAPACIF27) was used for reporting precipitation in Pacific Grove. The Monterey Airport (KMRY) was used for reporting precipitation in Carmel, Monterey and Seaside. The Salinas North station (CIMIS #116) was used for reporting precipitation in Salinas.

	Pre	cipitation (in)
Wet Sample Date	Carmel, Monterey, Seaside	Salinas	Pacific Grove
10/13/2009	2.92	2.02	2.92
10/17/2010	0.25	0.11	0.17
11/20/2010	1.45	0.72	0.94
10/5/2011	0.84	0.00	0.57
10/22/2012	0.24	0.00	0.30
3/6/2013	0.33	0.29	0.22
10/28/2013	0.39	0.04	0.16
11/20/2013	0.36	0.25	0.19
3/31/2014	0.38	0.19	0.31
10/25/2014	0.18	0.19	0.09
10/31/2014	1.35	0.90	1.10
11/2/2015	1.42	0.00	1.19
10/15/16	0.59	0.00	0.17
11/16/17	0.45	0.06	0.23
11/23/18	0.29	0.48	0.34
11/26/19	0.94	0.40	0.74
12/13/20	0.28	0.26	0.25
10/24/21	1.75	0.76	0.66

Monterey Bay Sanctuary Citizen Watershed Monitoring Network

99 Pacific Street Monterey, CA 93940 Lindsay@californiamsf.org

Figure 1: Map of MRSWMP Monitoring Locations.

Imagery Data Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USG AEX, Getmapping, Aeroprid, IGN, IGP, swisstopo, and the GIS User Community

 Table 2: Monitoring Site Information

City	Site ID	Site Name
Carmel	307-CASD-01	4 th Avenue
Carmel	307-CASD-02	Ocean
Carmel	307-CASD-03	8 th Avenue
Carmel	307-CASD-04	Mission
Carmel	307-CASD-05	Santa Lucia
Carmel	307-CASD-06	Rio Road
Monterey	309-LIBRA-31	Hartnell Gulch
Monterey	309-MAJOR-31	Majors Creek
Monterey	309-MSD-02	Soledad (St. Timothy's)
Monterey	309-MSD-03	Twin 51's
Monterey	309-MSD-04	San Carlos
Monterey	309-MSD-05	Steinbeck
Pacific Grove	309-ASILO-31	Asilomar
Pacific Grove	309-CENTR-31	Greenwood
Pacific Grove	309-PGSD-01	8 th Street
Pacific Grove	309-PGSD-03	Lover's Point
Pacific Grove	309-PGSD-04	Pico
Pacific Grove	309-PGSD-06	Congress
Pacific Grove	309-PGSD-07	Hopkins (old)
Pacific Grove	309-PGSD-08	HopkinsPG
Pacific Grove	309-PGSD-09	HopkinsMon
Pacific Grove	309-PGSD-10	Fountain
Pacific Grove	309-PGSD-11	Fountain and 15 th
Pacific Grove	309-PGSD-12	Grand
Pacific Grove	309-PGSD-13	Forest
Pacific Grove	309-PGSD-14	17th Avenue
Pacific Grove	309-PGSD-15	Sea Palm
Seaside	309-SSD-01	Hilby
Seaside	309-SSD-02	Bay Street
Seaside	309-SSD-03	Hotel
Salinas	309-SASD-01	Boronda Street
Salinas	309-SASD-02	Las Palmas
Carmel Valley	307-CVSD-01	Carmel Valley
Pajaro	305-PASD-01	Pajaro

Comparisons of the concentrations of pollutants between the pre-permit (2000 to 2006), postpermit Phase I (2007 to 2014), and post-permit Phase II (2015 to 2021) timeframes were made for pollutants consistently monitored by the MBNMS citizen science program for all sites. The term "Post-permit Phase I" refers to the time period after which the first NPDES Phase II MS4 permit was approved for Monterey County, and before the first multi-year MRSWMP report in 2015. The term "Post-permit Phase II" refers to the time period since the first multi-year MRSWMP report in 2015 through the present. Thus, both the "Post-permit Phase I" and "Post-permit Phase II" time periods had active permitting requirements for storm water quality. The pollutants that were consistently monitored during all time periods and included in statistical analyses were total copper, total zinc, total lead, nitrate-N, orthophosphate-P, *E.coli*, and total suspended solids (TSS). Additionally, MBAS was consistently monitored during the post-permit Phase I and post-permit Phase II time periods, so it was included in the statistical analyses for those timeframes. Pollutants that were not consistently monitored could not be included in the statistical comparison due to lack of data.

This comparison allows for an overall review of program effectiveness of two Monterey Peninsula cities in improving storm water pollution following intensified efforts to reduce pollution through best management practices as a result of the NPDES Phase II MS4 permit requirements and changes in management practices following the first multi-year MRSWMP report published in 2015. City efforts to reduce pollution included: public education and outreach directed towards specific sectors, public involvement in clean-up and sampling, eliminating illicit discharges, developing guidelines and standards for construction runoff, implementing street sweeping, periodically cleaning out storm drains, assessing sewer line integrity, and other measures as spelled out in the "Monterey Regional Storm Water Management Program, October 31, 2005". As more monitoring data is collected through time at other Monterey Peninsula cities, we will be able to track overall program effectiveness in the region.

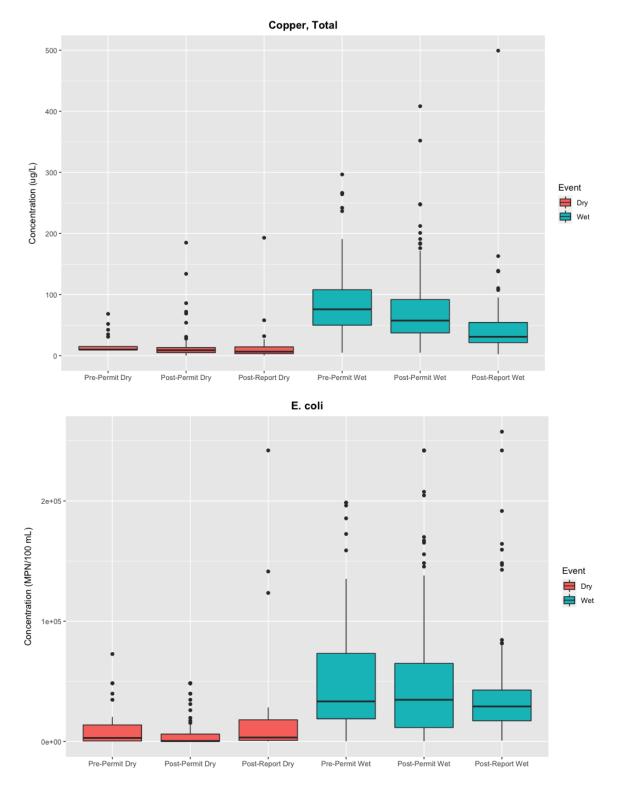
The statistical comparisons to determine whether a difference existed between pre-permit, postpermit Phase I, and post-permit Phase II concentrations were made using the Wilcoxon Rank-Sum test, which is a nonparametric alternative to the sample t-test. A p-value ≤ 0.05 was selected to represent a significant difference between the two time frames. In this case, we were 95% confident that a difference existed in pollution concentrations prior to implementation of MRSWMP compared with after implementation of MRSWMP, thus concluding that a change had taken place. For this analysis, wet and dry weather results were analyzed separately because of the differences found under these two conditions.

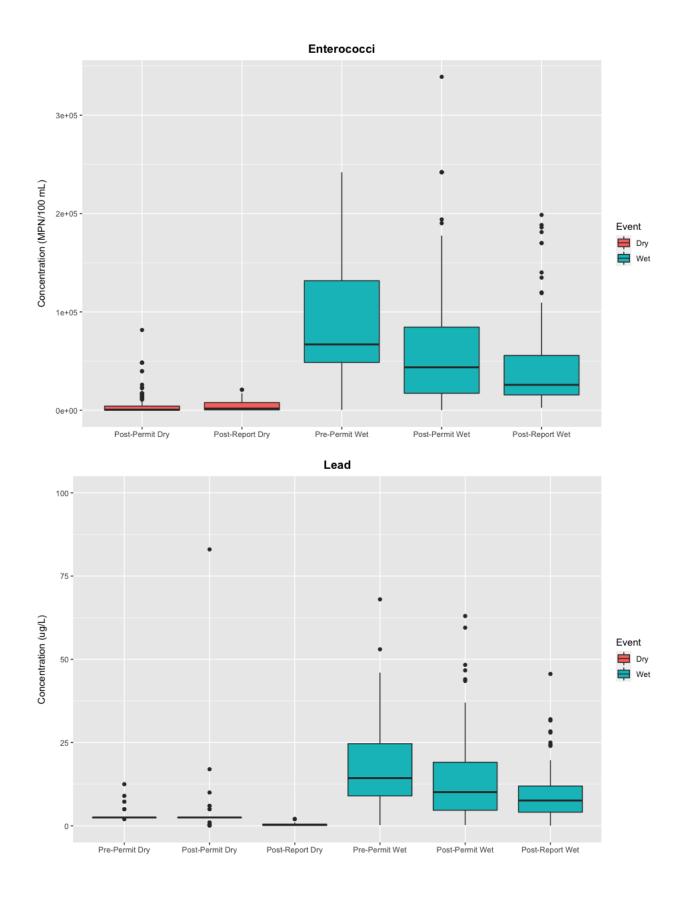
To supplement the statistical test, box and whisker plots of the three timeframes for all sites were developed for wet and dry concentrations. Box and whisker plots show a distribution of the dataset in a convenient format for making comparisons. The box represents the range of 50% of the data with a line drawn in the middle that represents the median value. The upper and lower whiskers represent the remaining upper and lower 25% of the data, excluding outliers. Outliers (much higher or lower values) are represented by the circles drawn above or below the whiskers. Viewing these plots allows for the comparison of statistical findings with the data range differences between the three timeframes. Box and whisker plots were also developed for the cities

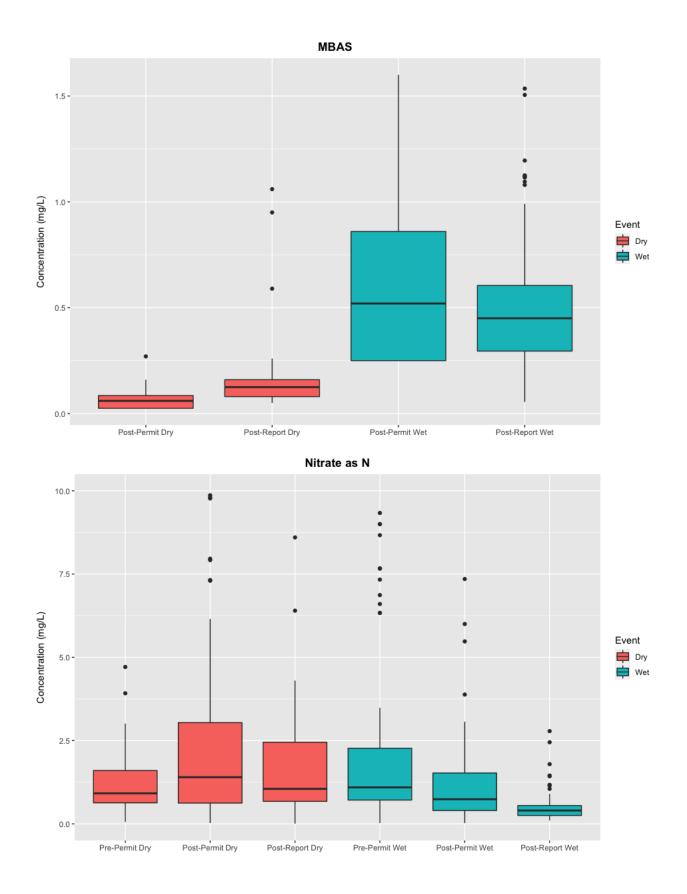
of Pacific Grove, Monterey, Carmel, and Seaside, so that comparisons between cities could be visualized and assessed.

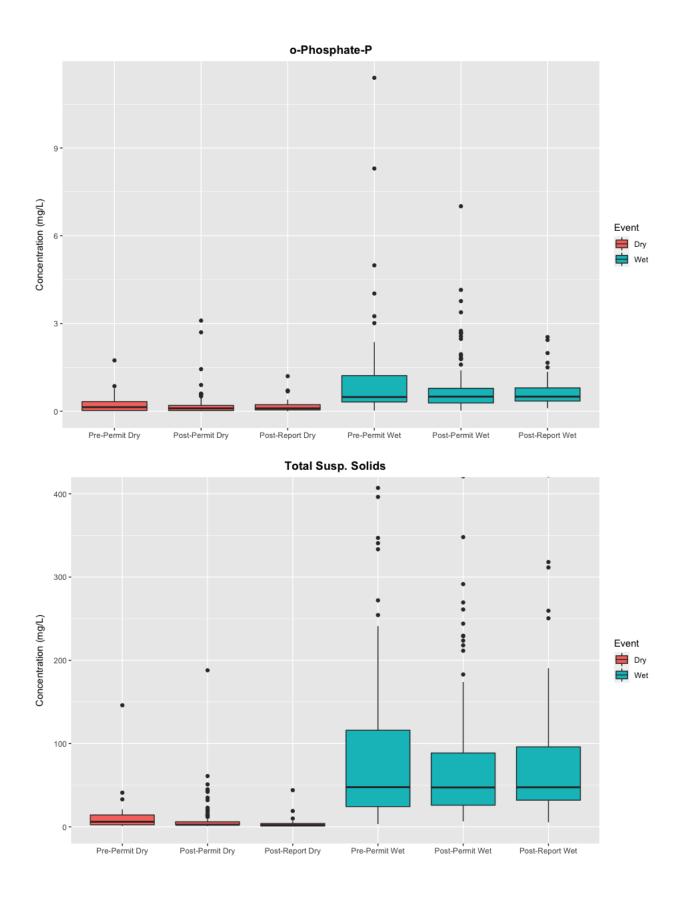
Under wet conditions, concentrations of nitrate, copper, lead, and zinc decreased significantly over time. For these analytes, post-permit concentrations were significantly lower than pre-permit Phase I concentrations and post-permit Phase II concentrations were significantly lower than post-permit concentrations. *E. coli*, orthophosphate-P, TSS, and MBAS concentrations did not change significantly over time. No analytes saw increases in concentrations over time. A summary of Wilcoxon Rank Sum results with p-values for all concentration changes during wet conditions can be found in Table 3.

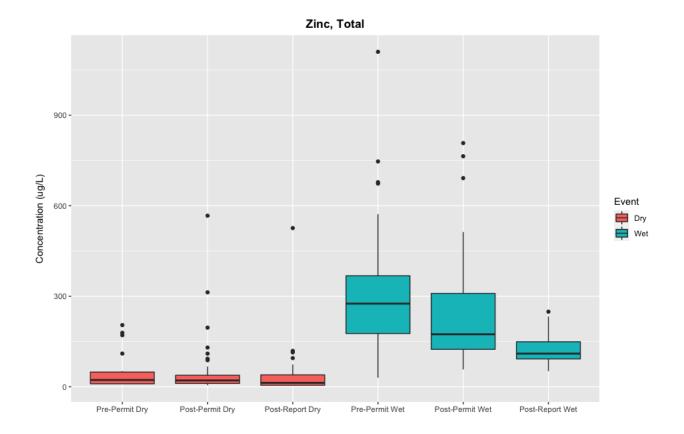
Under dry conditions, differences in concentrations over time were more variable. During dry conditions, the source of the flows is largely from irrigation of lawns, golf courses, urban public spaces, small springs and agricultural lands, as well as some illicit discharges or spills. Lead and TSS decreased significantly over time (post-permit Phase I concentrations were significantly lower than pre-permit concentrations, and post-permit Phase II concentrations were significantly lower than post-permit Phase I concentrations). For copper, post-permit Phase I and post-permit Phase II concentrations were significantly lower than pre-permit concentrations were significantly lower than pre-permit phase I concentrations, but post-permit Phase I and II concentrations were not significantly different from each other. *E. coli* was significantly lower during post-permit Phase I than pre-permit, but was significantly higher during post-permit Phase I. Nitrate was significantly higher during post-permit Phase II. Nitrate was significantly higher during post-permit Phase II. MBAS also increased, and was significantly higher during post-permit Phase II. A summary of Wilcoxon Rank Sum results with p-values for all concentration changes during dry conditions can be found in Table 4.

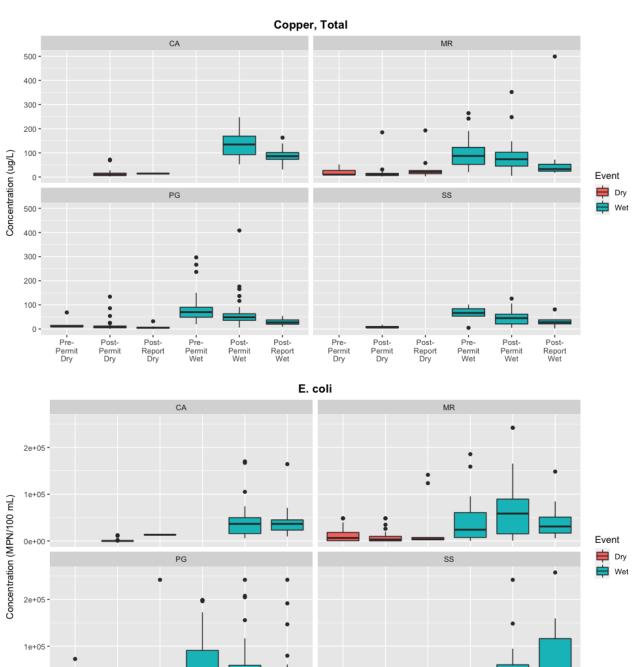

Table 3. Results of the Wilcoxon Rank-Sum test comparing pre-MRSWMP permit (2000-2006), post-MRSWMP permit (2007-2014), and post-permit Phase II (2015-2021) concentrations for sites consistently monitored by both programs during wet conditions. A p-value ≤ 0.05 is considered significant, indicating a change between the two time periods most likely occurred. Bolded values were significant, with green representing a decrease in concentrations over time and red representing an increase in concentrations over time. Dashed lines indicate that there was not sufficient data for statistical analysis.


	Nitrate							
Comparison,	as N	Copper	E. coli	MBAS	Lead	o-Phosphate-P	Zinc	TSS
Wet	p-value	p-value	p-value	p-value	p-value	p-value	p-value	p-value
Pre-permit >								
Post-permit	1.7e-				3.3e-		2.9e-	
Phase I	05	0.01	0.17	-	04	0.18	04	0.28
Pre-permit >								
Post-permit	< 2.2e-	7.3e-			4.4e-		2.4e-	
Phase II	16	12	0.11	-	09	0.33	13	0.45
Post-permit								
Phase I >								
Post-permit	2.7e-	1.54e-					2.4e-	
Phase II	09	08	0.42	0.15	0.003	0.77	07	0.68


Table 4. Results of the Wilcoxon Rank-Sum test comparing pre-MRSWMP permit (2000-2006), post-MRSWMP permit (2007-2014), and post-permit Phase II (2015-2021) concentrations for sites consistently monitored by both programs during dry conditions. A p-value ≤ 0.05 is considered significant, indicating a change between the two time periods most likely occurred. Bolded values were significant, with green representing a decrease in concentrations over time and red representing an increase in concentrations over time. Dashed lines indicate that there was not sufficient data for statistical analysis.


	Nitrate							
Comparison,	as N	Copper	E. coli	MBAS	Lead	o-Phosphate-P	Zinc	TSS
Dry	p-value	p-value	p-value	p-value	p-value	p-value	p-value	p-value
Pre-permit >								
Post-permit		4.0e-						
Phase I	-	04	0.02	-	0.02	0.21	0.77	0.001
Post-permit								
Phase I > Pre-								
permit	0.05	-	-	-	-	-	-	-
Pre-permit								
Phase I > Post-					3.2e-			4.8e-
permit Phase II	0.79	0.001	0.68	-	12	0.27	0.49	04
Post-permit								
Phase I > Post-					< 2.2e-			
permit Phase II	0.27	0.86	-	-	16	-	-	0.02
Post-permit								
Phase II > Post-								
permit Phase I	-	-	0.005	0.002	-	0.32	0.68	-


Figure 2. Boxplot and whisker plots comparing pre-permit, post-permit Phase I ("post-permit"), and post-permit Phase II ("post-report") pollutant concentrations for all sites during both dry and wet events.



0e+00 -

Pre-Permit Dry Post-Permit Dry Pre-Permit Wet Post-Permit Wet

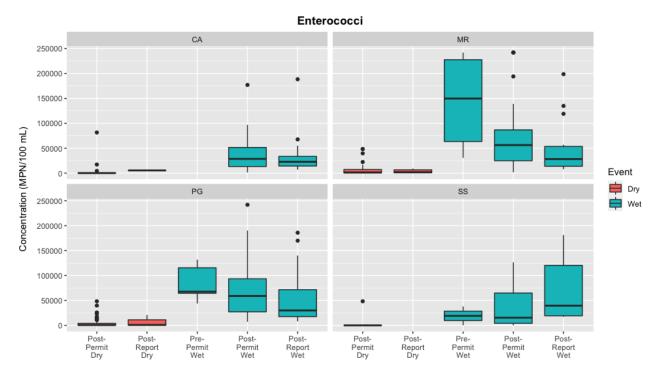
Post-

Report Wet Pre-Permit Dry Post-Permit Dry

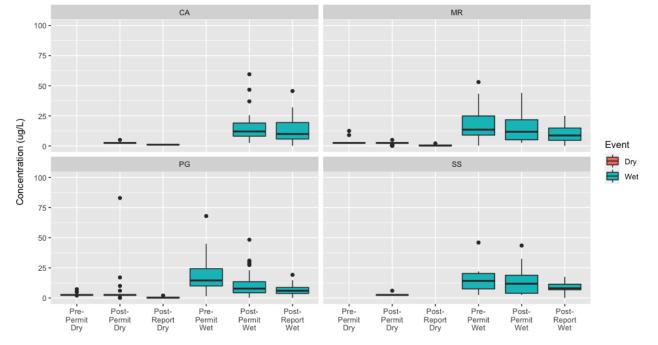
Post-

Report Dry

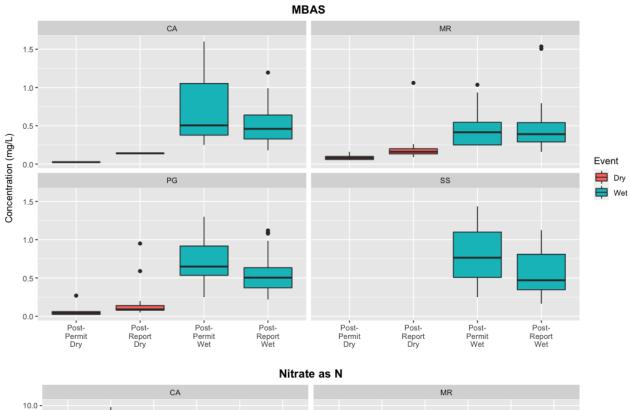
Post-Report Dry

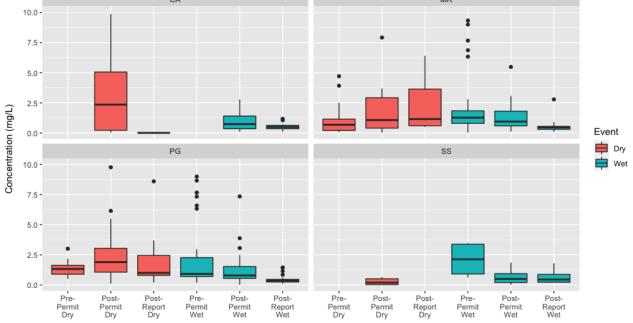

Figure 3: Box and whisker plots of analyte concentrations by city, where "CA" = Carmel, "MR" = Monterey, "PG" = Pacific Grove, and "SS" = Seaside. On these plots, Post-Permit Phase I is labelled as "Post-Permit" and Post-Permit Phase II is labelled as "Post-Report."

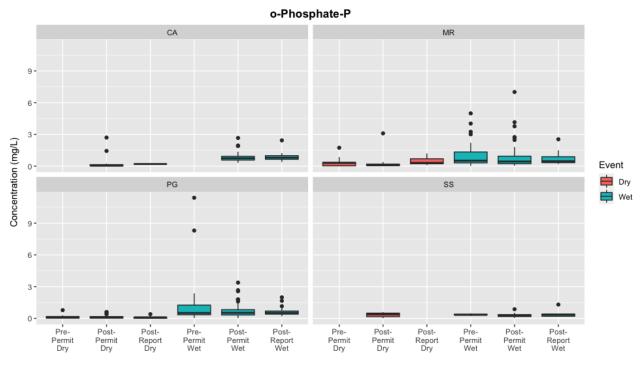
Post-Permit Wet

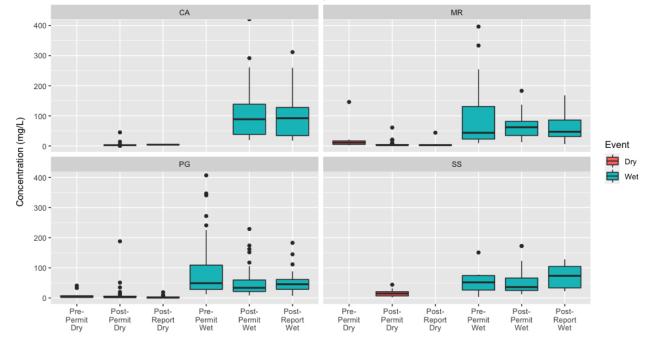

Post-

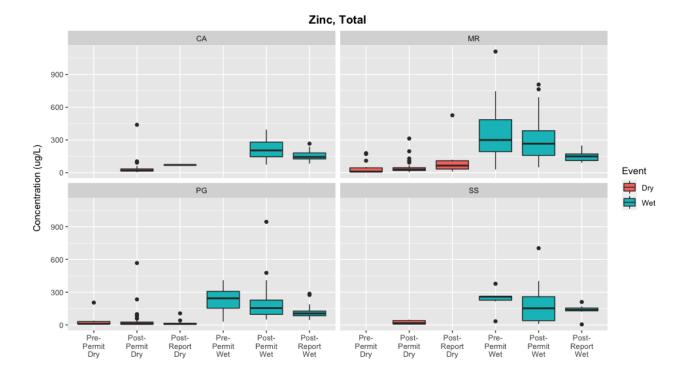
Report Wet


Pre-Permit Wet




Lead


17



Total Susp. Solids

II. CONCENTRATION 85TH PERCENTILES

Monitoring data for all MRSWMP sites from 2006-2021 was analyzed to provide the 85th percentile of concentration for each pollutant or water quality measure. Percentile information can be helpful in identifying locations with the highest concentration of pollutants, indicating where a problem may exist. The 85th percentile provides a benchmark for relative comparison between sites and is a practice used in the ASBS program as requested by the SWRCB. Water Quality Objectives for pollutants are also shown so that the 85th percentiles can be compared with concentrations established for aquatic health. However, the Water Quality Objectives are limits for the receiving water body, not storm water outfalls. The concentrations of pollutants in the receiving water bodies are expected to be lower than those of the storm water outfalls, but were not sampled as part of the MRSWMP monitoring.

Pollutants assessed were total copper, total zinc, total lead, nitrate-N, orthophosphate-P, urea, *E.coli, Enterococcus*, total coliform, total suspended solids, MBAS, fluoride, ammonia, hardness, potassium and calcium. Water quality measures assessed were color and turbidity. Percentiles were calculated for the following scenarios:

- Combined wet and dry weather MRSWMP data by analyte for all sites
- Wet weather MRSWMP data by analyte for all sites
- Dry weather MRSWMP data by analyte for all sites
- Combined wet and dry weather MRSWMP data by analyte for each City with more than five sites
- Wet weather MRSWMP data by analyte for each City with more than five sites
- Dry weather MRSWMP data by analyte for each City with more than five sites

The terms "wet" and "dry" denote whether precipitation was occurring at the time of monitoring and do not indicate whether there was flow or not at the monitoring site. However, during dry weather monitoring, sometimes flow was absent, and a sample could not be obtained.

Our results indicate that there were some analytes that consistently exceeded Water Quality Objectives (WQOs). The analytes for which the 85th percentile concentration exceeded the WQO were: *E. Coli*, Enterococci, MBAS, orthophosphate-P, and turbidity for both wet and dry events; copper and zinc for wet events; and nitrate for dry events. Management practices to reduce concentrations of these analytes are recommended to ensure that water quality in the Monterey Bay continues to improve.

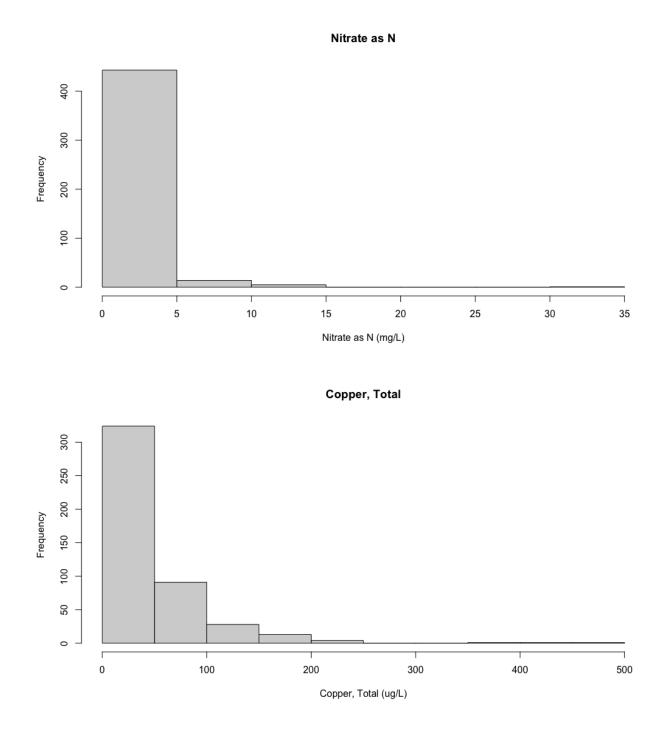
In addition to providing 85th percentiles, histograms for the combined wet and dry weather are shown in order to inform the distribution of concentrations found. For each histogram, the x-axis represents the measured concentration of an analyte and the y-axis represents the number of samples, or frequency. Typically, concentration results are skewed toward the left axis, with a predominance of lower values found and fewer high values.

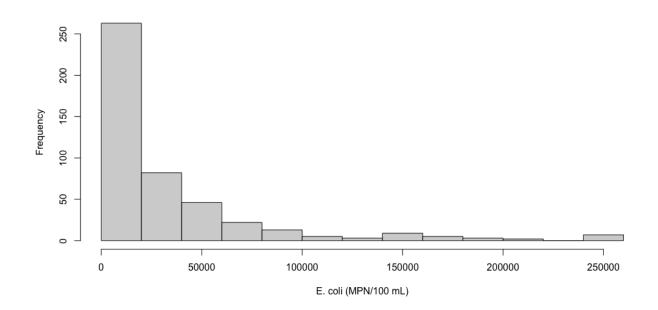
For each day of wet weather monitoring, a time series of two or three samples were taken. For computation of the percentiles of concentration, the average of each day's samples at a monitoring

site was used. When sites did not have flow, no sample was collected and therefore no concentration was determined for that day.

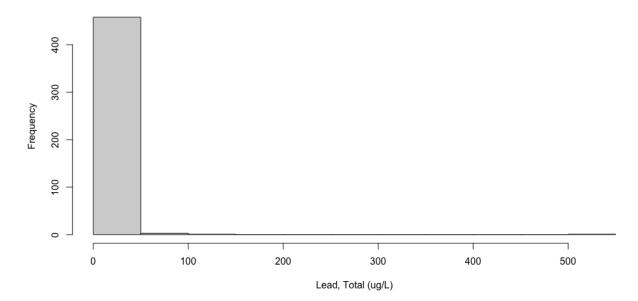
Monterey Bay Sanctuary Citizen Watershed Monitoring Network

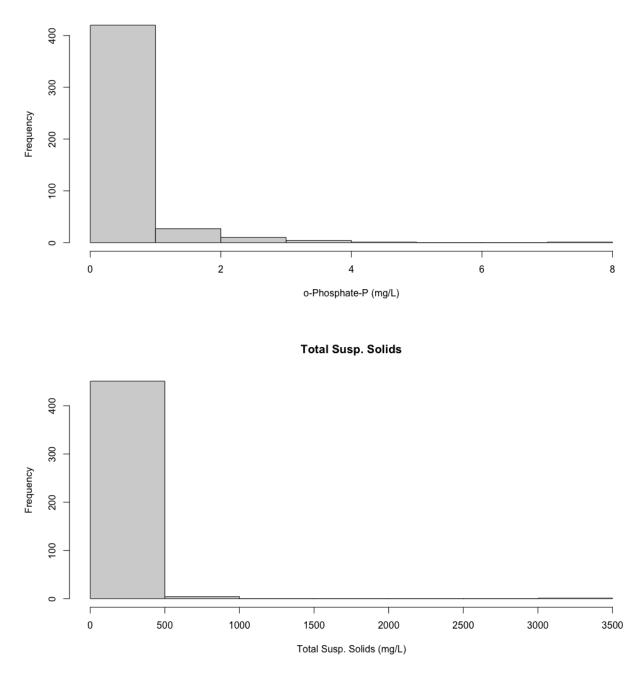
99 Pacific Street Monterey, CA 93940 Lindsay@californiamsf.org


CONCENTRATION 85^{TH} PERCENTILES

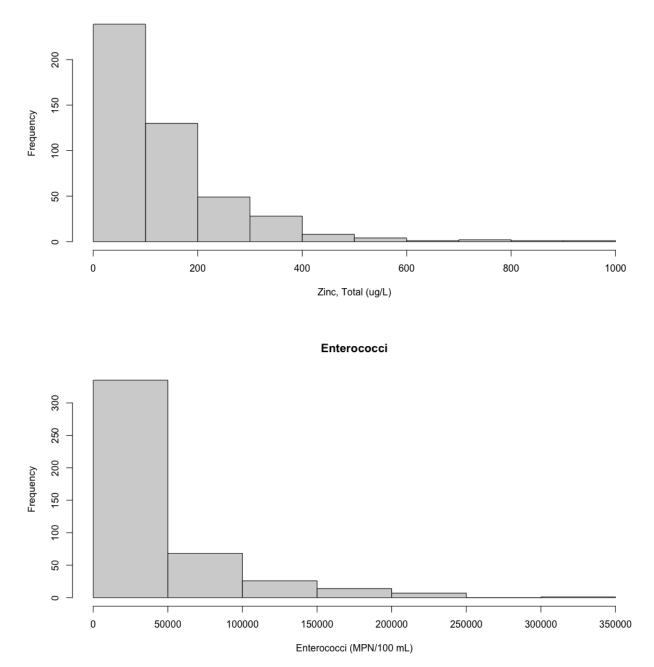

Table 4: Wet and Dry Combined Percentiles: 85th concentration percentiles for wet and dry weather conditions for MRSWMP monitoring (2006-2021) shown by analyte or water quality measure for all MRSWMP sites. Highlighted values indicate where the 85th percentile of analyte concentrations exceed the WQO.

Monterey Bay		Combined	Wet and Dry	Wet	Weather	Dry \	Neather	WQO
Analyte	Units	# Samples	85th Percentile	# Samples	85th Percentile	# Samples	85th Percentile	Receiving Water
Ammonia-N	mg/L	158	0.895	105	0.93	53	0.727	< 50 mg/L
Calcium	mg/L	379	89	222	26.3	157	109	NA
Coliform, Total	MPN/100 mL	315	2.42E+05	162	2.42E+05	153	4.84E+04	NA
Color	Color Units	152	250	103	293	49	150	< 500
Color, True	Color Units	21	159	13	183	8	29.8	< 500
Copper, Total	ug/L	463	83.6	262	112	201	21.5	< 30 ug/L
E. coli	MPN/100 mL	460	5.99E+04	259	8.35E+04	201	1.73E+04	< 235 MPN/100 mL
Enterococci	MPN/100 mL	451	8.16E+04	259	1.12E+05	192	1.48E+04	< 104 MPN/100 mL
Flow	L/sec	223	533	114	1.20E+03	109	10	NA
Fluoride	mg/L	112	0.4	85	0.32	27	0.5	NA
Hardness as CaCO3	mg/L	435	371	253	107	182	447	> 10 and < 2000 mg/L
Lead, Total	ug/L	463	15.5	262	21.5	201	2.5	< 30 ug/L
Magnesium	mg/L	364	38.6	207	11.4	157	46	NA
MBAS (Surfactants)	mg/L	173	0.772	116	0.91	57	0.466	< 0.2 mg/L
Nitrate as N	mg/L	463	2.5	262	1.61	201	3.65	< 2.25 mg/L
o-Phosphate-P	mg/L	463	0.804	262	1.00	201	0.39	< 0.12 mg/L
Potassium	mg/L	173	10	116	9.83	57	10.1	< 20 mg/L
Total Susp. Solids	mg/L	456	90	255	126	201	15	< 500 mg/L
Turbidity	NTU	173	51.9	116	57.8	57	26.2	< 25 NTU
Urea	ug/L	457	408	256	539	201	172	NA
Zinc, Total	ug/L	463	238	262	303	201	88	< 200 ug/L


Figure 4: Histograms for Pollutant Concentrations for Combined Wet and Dry Weather Data at All Sites.



E. coli



o-Phosphate-P

Carmel		Combi	ined Wet ar	nd Dry	V	Vet Weathe	er	0	ory Weathe	r	WQO
			City 85th	Monterey Bay 85th		City 85th	Monterey Bay 85th		City 85th	Monterey Bay 85th	
Analyte	Units	# Samples	Percentile	Percentile	# Samples	Percentile	Percentile	# Samples	Percentile	Percentile	Receiving Water
Ammonia-N	mg/L	21	0.835	0.895	18	0.835	0.931	3	0.904	0.727	< 50 mg/L
Calcium	mg/L	60	68	89	40	22.7	26.3	20	75.3	109	NA
Coliform, Total	MPN/100 mL	46	2.42E+05	2.42E+05	27	2.42E+05	2.42E+05	19	1.92E+04	4.84E+04	NA
Color	Color Units	22	371	250	18	361	293	4	381	150	< 500
Color, True	Color Units	2	211	159	2	211	183	NA	NA	29.8	< 500
Copper, Total	ug/L	70	159	83.6	47	170	112	23	56.7	21.5	< 30 ug/L
E. coli	MPN/100 mL	68	4.91E+04	5.99E+04	45	6.29E+04	8.35E+04	23	1.19E+04	1.73E+04	< 235 MPN/100 mL
Enterococci	MPN/100 mL	68	5.48E+04	8.16E+04	45	6.63E+04	1.12E+05	23	1.28E+04	1.48E+04	< 104 MPN/100 mL
Flow	L/sec	53	1000	533	31	1350	1200	22	1	10	NA
Fluoride	mg/L	17	0.4	0.4	15	0.4	0.316	2	0.1	0.5	NA
Hardness as CaCO3	mg/L	67	305	371	45	105	107	22	325	447	> 10 and < 2000 mg/L
Lead, Total	ug/L	70	22.2	15.5	47	24.6	21.5	23	2.5	2.5	< 30 ug/L
Magnesium	mg/L	57	34.6	38.6	37	12	11.4	20	37	46	NA
MBAS (Surfactants)	mg/L	24	0.863	0.772	20	0.926	0.91	4	0.526	0.466	< 0.2 mg/L
Nitrate as N	mg/L	70	2.65	2.5	47	1.42	1.61	23	7.31	3.65	< 2.25 mg/L
o-Phosphate-P	mg/L	70	1.08	0.804	47	1.16	0.998	23	0.681	0.39	< 0.12 mg/L
Potassium	mg/L	24	13	10	20	13.7	9.83	4	8.73	10.1	< 20 mg/L
Total Susp. Solids	mg/L	69	157	90	46	219	126	23	11.3	15	< 500 mg/L
Turbidity	NTU	24	96.6	51.9	20	93.6	57.8	4	62.5	26.2	< 25 NTU
Urea	ug/L	69	326	408	46	349	539	23	31.7	172	NA
Zinc, Total	ug/L	70	250	238	47	289	303	23	102	88	< 200 ug/L

Table 5: City of Carmel 85th Percentile: Concentration percentiles for MRSWMP data (2006-2021) for Carmel by analyte or water quality measure. Highlighted values indicate where the 85th percentile of analyte concentrations exceed the WQO.

Pacific Grove	Comt	oined Wet ar	nd Dry	ν	Vet Weathe	er	Γ	Ory Weathe	r	WQO	
Analyte	Units	# Samples	City 85th Percentile	Monterey Bay 85th Percentile	# Samples	City 85th Percentile	Monterey Bay 85th Percentile	# Samples	City 85th Percentile	Monterey Bay 85th Percentile	Receiving Water
Ammonia-N	mg/L	68	0.69	0.89	37	0.88	0.93	31	0.50	0.73	< 50 mg/L
Calcium	mg/L	160	86.2	89	85	23.9	26.3	75	94.9	109	NA
Coliform, Total	MPN/100 mL	132	2.42E+05	2.42E+05	61	2.42E+05	2.42E+05	71	4.84E+04	4.84E+04	NA
Color	Color Units	63	200	250	35	248	293	28	100	150	< 500
Color, True	Color Units	10	158	159	5	167	183	5	51.6	29.8	< 500
Copper, Total	ug/L	201	54.5	83.6	103	66.2	112	98	17	21.5	< 30 ug/L
E. coli	MPN/100 mL	201	4.84E+04	5.99E+04	103	7.91E+04	8.35E+04	98	2.18E+04	1.73E+04	< 235 MPN/100 mL
Enterococci	MPN/100 mL	197	8.74E+04	8.16E+04	103	1.16E+05	1.12E+05	94	1.38E+04	1.48E+04	< 104 MPN/100 mL
Flow	L/sec	93	450	533	45	1.08E+03	1.20E+03	48	12.9	10	NA
Fluoride	mg/L	44	0.28	0.4	28	0.22	0.32	16	0.3	0.5	NA
Hardness as CaCO3	mg/L	186	369	371	97	96.4	107	89	404	447	> 10 and < 2000 mg/L
Lead, Total	ug/L	201	11.3	15.5	103	15.4	21.5	98	2.5	2.5	< 30 ug/L
Magnesium	mg/L	154	38.1	38.6	79	9.15	11.4	75	42.9	46	NA
MBAS (Surfactants)	mg/L	73	0.71	0.772	40	0.91	0.91	33	0.50	0.47	< 0.2 mg/L
Nitrate as N	mg/L	201	2.46	2.50	103	1.53	1.61	98	3.64	3.65	< 2.25 mg/L
o-Phosphate-P	mg/L	201	0.74	0.80	103	1.06	1.00	98	0.25	0.39	< 0.12 mg/L
Potassium	mg/L	73	9.42	10.0	40	9.4	9.83	33	9.6	10.1	< 20 mg/L
Total Susp. Solids	mg/L	200	57.2	90.0	102	71.4	126.3	98	10.9	15	< 500 mg/L
Turbidity	NTU	73	31.6	51.9	40	40.2	57.8	33	21.1	26.2	< 25 NTU
Urea	ug/L	199	363	408	101	450	539	98	179	172	NA
Zinc, Total	ug/L	201	175	238	103	242	303	98	53.0	88	< 200 ug/L

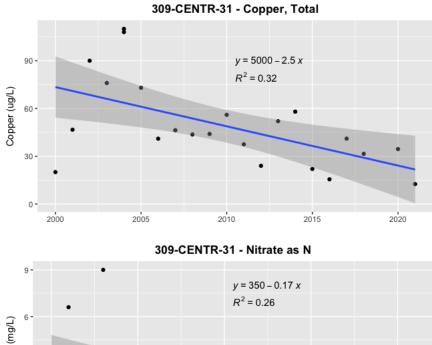
Table 6: City of Pacific Grove 85th Percentile: Concentration percentiles for MRSWMP data (2006-2021) for Pacific Grove by analyte or water quality measure. Highlighted values indicate where the 85th percentile of analyte concentrations exceed the WQO.

Monterey	lonterey		nbined Wet	and Dry		Wet Weat	her		Dry Weat	her	WQO
			City 85th	Monterey Bay		City 85th	Monterey Bay		City 85th	Monterey Bay	
Analyte	Units	# Samples	Percentile	85th Percentile	# Samples	Percentile	85th Percentile	# Samples	Percentile	85th Percentile	Receiving Water
Ammonia-N	mg/L	42	1.34	0.89	25	2.97	0.93	17	0.90	0.73	< 50 mg/L
Calcium	mg/L	105	121	89	53	35.3	26.3	52	169	109	NA
Coliform, Total	MPN/100 mL	94	2.42E+05	2.42E+05	41	2.42E+05	2.42E+05	53	4.84E+04	4.84E+04	NA
Color	Color Units	40	225	250	25	235	293	15	148	150	< 500
Color, True	Color Units	6	93.4	159	3	95.0	183	3	23.4	29.8	< 500
Copper, Total	ug/L	127	80.3	83.6	60	121	112	67	23.2	21.5	< 30 ug/L
E. coli	MPN/100 mL	127	8.20E+04	5.99E+04	60	1.15E+05	8.35E+04	67	1.56E+04	1.73E+04	< 235 MPN/100 mL
Enterococci	MPN/100 mL	122	7.24E+04	8.16E+04	60	1.35E+05	1.12E+05	62	1.55E+04	1.48E+04	< 104 MPN/100 mL
Flow	L/sec	75	572	533	37	1440	1203	38	13.7	10	NA
Fluoride	mg/L	30	0.50	0.4	21	0.23	0.32	9	0.6	0.5	NA
Hardness as CaCO3	mg/L	119	449	371	60	135	107	59	673	447	> 10 and < 2000 mg/L
Lead, Total	ug/L	127	14.6	15.5	60	22.0	21.5	67	2.5	2.5	< 30 ug/L
Magnesium	mg/L	102	44.9	38.6	50	12.9	11.4	52	57.7	46	NA
MBAS (Surfactants)	mg/L	46	0.57	0.77	28	0.79	0.91	18	0.27	0.466	< 0.2 mg/L
Nitrate as N	mg/L	127	2.98	2.50	60	1.83	1.61	67	3.61	3.65	< 2.25 mg/L
o-Phosphate-P	mg/L	127	0.90	0.80	60	1.55	1.00	67	0.35	0.39	< 0.12 mg/L
Potassium	mg/L	46	8.81	10.0	28	6.77	9.83	18	10.5	10.1	< 20 mg/L
Total Susp. Solids	mg/L	125	70.6	90.0	58	93.0	126	67	9.26	15	< 500 mg/L
Turbidity	NTU	46	41.8	51.9	28	49.6	57.8	18	20.2	26.2	< 25 NTU
Urea	ug/L	125	596	408	58	917	539	67	199	172	NA
Zinc, Total	ug/L	127	293	237.8	60	386	303	67	96.5	88	< 200 ug/L

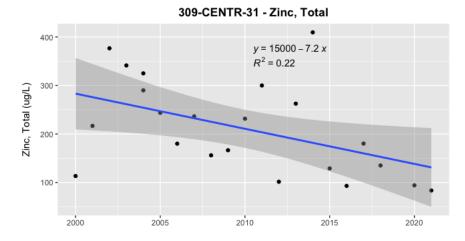
Table 7: City of Monterey 85th Percentile: Concentration percentiles for MRSWMP data (2006-2021) for Monterey by analyte or water quality measure. Highlighted values indicate where the 85th percentile of analyte concentrations exceed the WQO.

III. TREND ANALYSIS

Trends were evaluated for each site using the monotonic, non-parametric Mann-Kendall test (Kendall 1938, Mann 1945, Kendall 1948) using combined pre-permit, post-permit, and post-permit Phase II data. This test was chosen because it does not require that the data conform to any particular distribution. This is important for maintaining comparability of data in a data set such as MRSWMP since water quality data were positively skewed and often to varying degrees, so conducting transformations in order to perform parametric statistics is less accurate. Due to the variation found between data under wet and dry weather conditions, the trend analysis was performed only for wet conditions. Trends were evaluated for sites and pollutants consistently monitored by the MBNMS citizen science program from 2000-2021. These sites were only in Monterey and Pacific Grove and include: "309-MSD-03", "309-MSD-04", "309-MSD-05", "309-PGSD-01", "309-CENTR-31", "309-PGSD-03", and "309-PGSD-04".

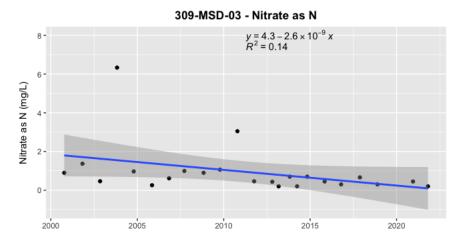

As statistics is based on probability, there is always the chance of making an error and either falsely identifying a trend when in actuality there is none (Type 1 error) or not identifying a trend when one does actually exist (Type 2 error). The chance of making an error is diminished with increasing data. To be cautious about making a Type 1 error, we set our significance level at a p-value of 0.05. This p-value implies that we have a 5% chance of incorrectly asserting there is a trend when there is not one. Due to the few number of samples for analyzing site trends, there is a high likelihood of making a Type 2 error. In other words, a trend may exist, but we have an insufficient number of data points necessary to detect it. With increasing years of sampling, this trend may become apparent in the future.

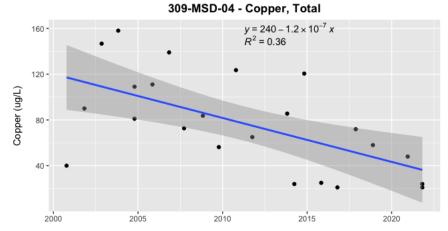
A total of 20 trends were found, all of which represented improvement in water quality shown by their declining slope. Trends were found at 7 different sites located within 2 cities: Monterey and Pacific Grove. Trends were found for 7 pollutants (*Enterococci*, zinc, lead, nitrate, copper, ammonia, and o-phosphate) and no trends were found for 2 pollutants (E. Coli and total suspended solids). Decreasing trends (improving water quality) for nitrate were found at 7 sites, for copper and zinc at 5 sites, for lead and o-phosphate at 3 sites, and for Enterococci and ammonia at 1 site. Analyte trends for each site evaluated are shown in Table 8.

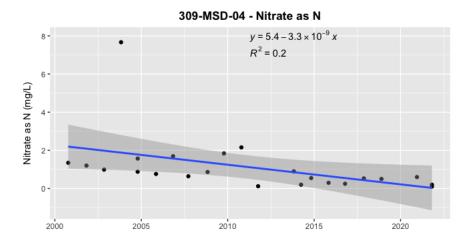

Table 8. Trend Test results for analyte concentrations over the time period of monitoring (2000 – 2021) for sites and pollutants consistently monitored by the MBNMS citizen science program. Significant relationships (p-value < 0.05) between concentration and time are indicated in bold. All significant relationships indicate decreasing trends (improving water quality).

		Pacific (Grove			Monterey	
	309-CENTR-31	309-PGSD-01	309-PGSD-03	309-PGSD-	309-MSD-03	309-MSD-04	309-MSD-05
Analyte	p-value	p-value	p-value	04 p-value	p-value	p-value	p-value
Nitrate as N	0.00042	0.09	0.0012	0.000697	0.0081	0.00096	0.014
Copper	0.0048	0.013	0.0014	0.09	0.00434	0.0026	0.11
Ammonia-N	0.23	1	0.0094	0.2	0.173	0.25	0.173
E.coli	1	0.14	0.114	0.197	0.867	0.48	0.27
Lead	0.14	0.065	0.019	0.0012	0.69	0.69	0.0027
o-Phosphate-P	0.165	1	0.0036	0.08	0.28	0.024	0.03
Total Susp. Solids	0.93	0.89	0.615	0.94	0.73	0.21	1
Zinc	0.011	0.16	0.00183	0.000458	0.19	0.005	0.00047
Enterococci	1	0.89	0.34	0.54	0.13	0.55	0.0093

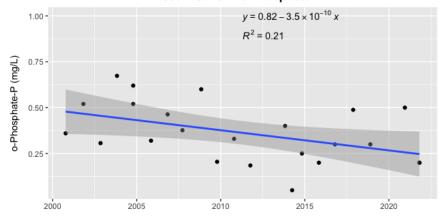
TREND PLOTS PACIFIC GROVE

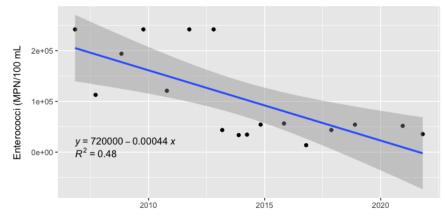

y = 350 - 0.17 x R² = 0.26

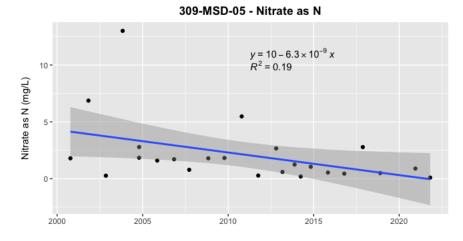



33

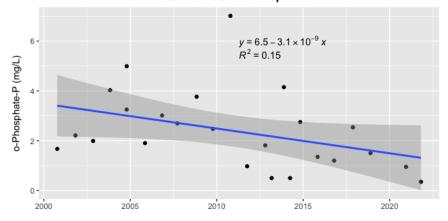
TREND PLOTS MONTEREY

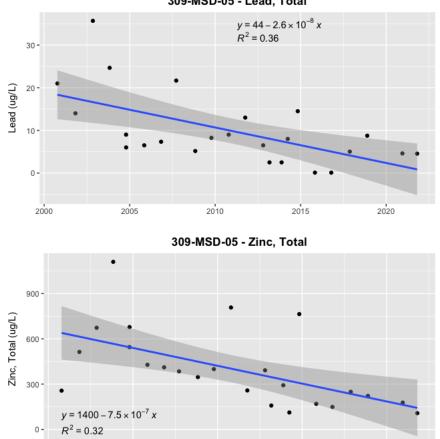




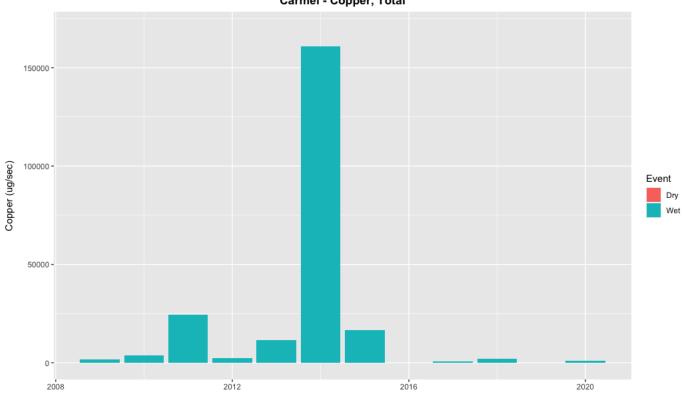


309-MSD-04 - o-Phosphate-P



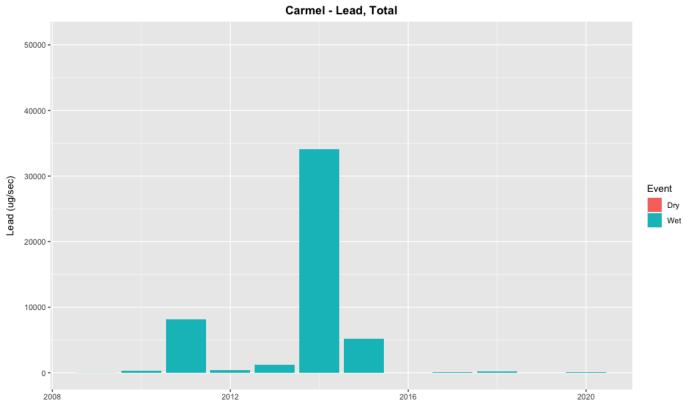

309-MSD-05 - Enterococci

309-MSD-05 - o-Phosphate-P

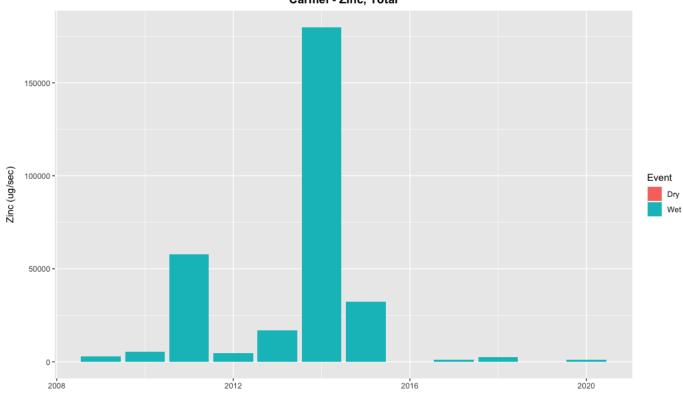

309-MSD-05 - Lead, Total

IV. INSTANTANEOUS LOAD

Load was determined for sites where there was both a measure of flow and concentration at the time of sampling. For each day of sampling, the load measures from the time series were averaged to compute the instantaneous load on that day. Annual load cannot be extrapolated from these instantaneous loads as both concentration and flow are highly variable and MRSWMP sampling occurred only between 2 and 4 times per year. Events are classified as wet or dry, where wet events represent samples and measures taken during the first rainfall of the water year and dry events occur prior to rainfall. On some occasions, sites were dry and could not be monitored during the dry season. In these cases, there was no sample taken.

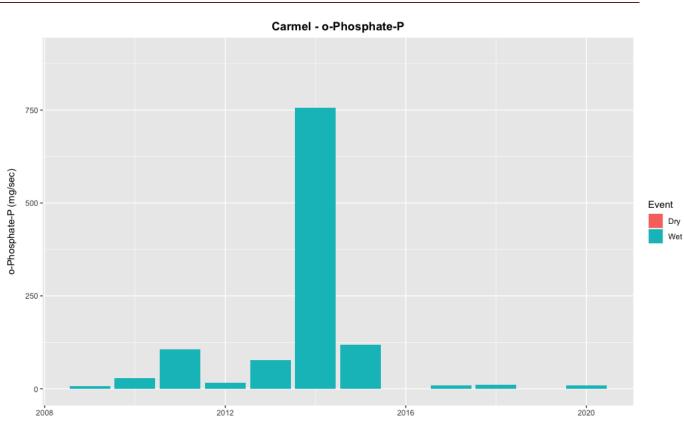

For the instantaneous load bar charts, when sites were monitored multiple times during either wet or dry events in a single year, the average load for this wet or dry event was calculated for the year for the graphic.

INSTANTANEOUS COPPER LOAD (UG/SEC)

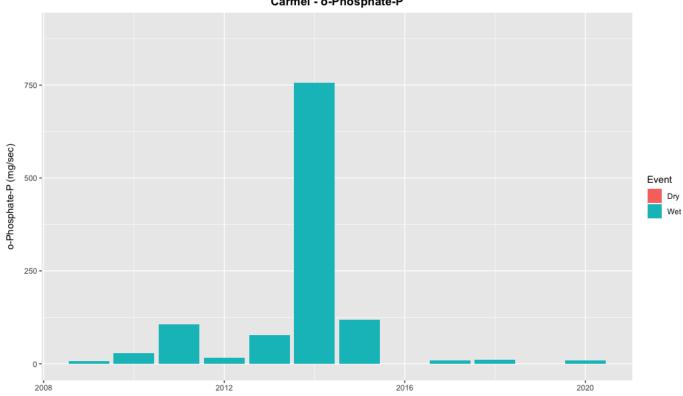


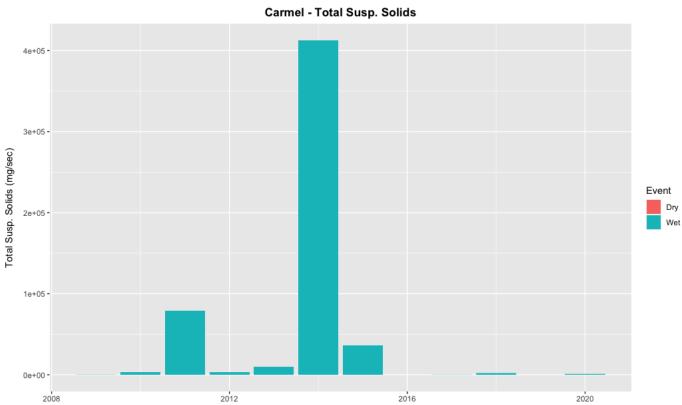
Carmel - Copper, Total

INSTANTANEOUS LEAD LOAD (UG/SEC)



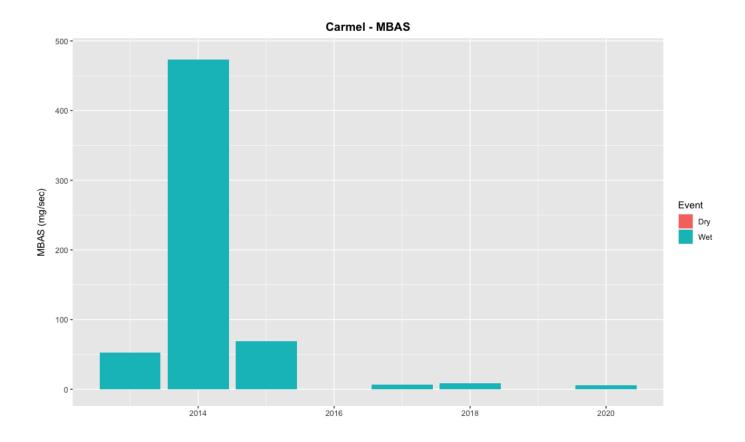
INSTANTANEOUS ZINC LOAD (UG/SEC)

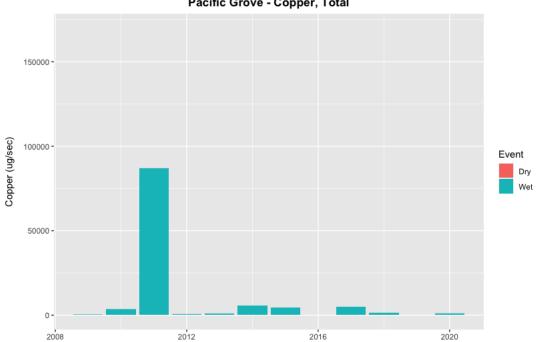

Carmel - Zinc, Total

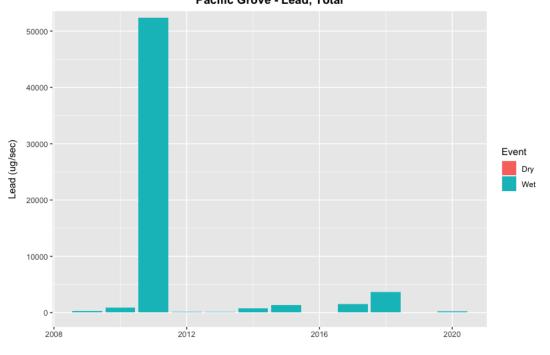

INSTANTANEOUS ORTHOPHOSPHATE LOAD (MG/SEC)

INSTANTANEOUS NITRATE LOAD (MG/SEC)

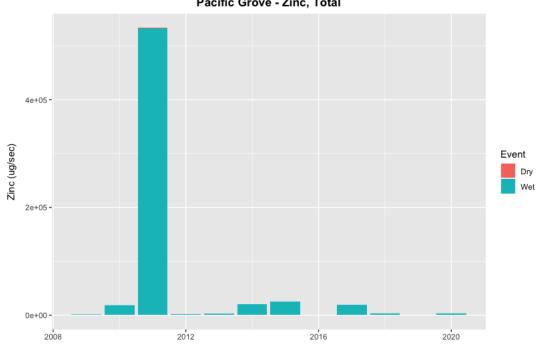
Carmel - o-Phosphate-P



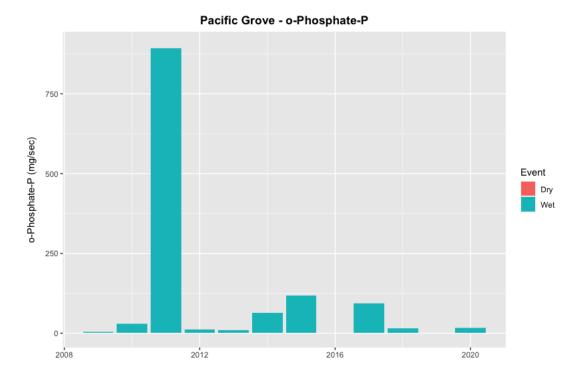

INSTANTANEOUS TOTAL SUSPENDED SOLIDS LOAD (MG/SEC)



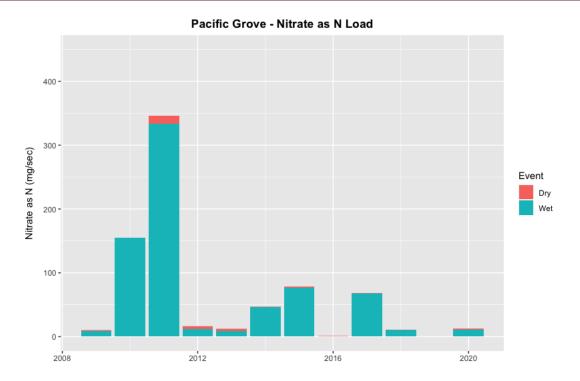
INSTANTANEOUS COPPER LOAD (UG/SEC)


Pacific Grove - Copper, Total

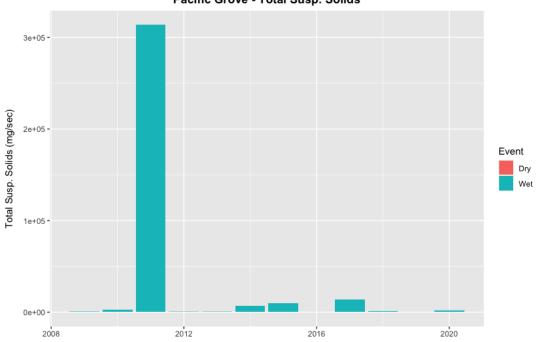
INSTANTANEOUS LEAD LOAD (UG/SEC)

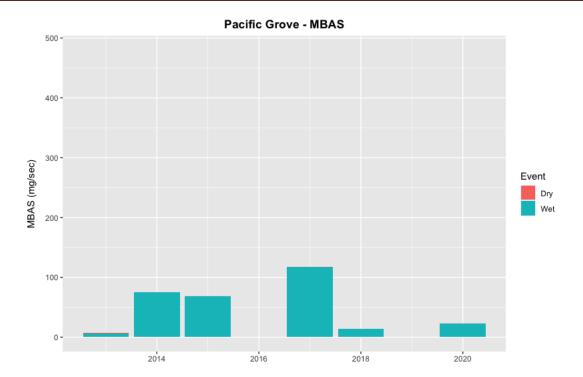

Pacific Grove - Lead, Total

INSTANTANEOUS ZINC LOAD (UG/SEC)

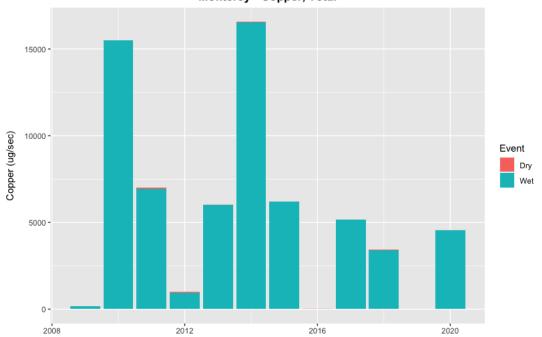


Pacific Grove - Zinc, Total

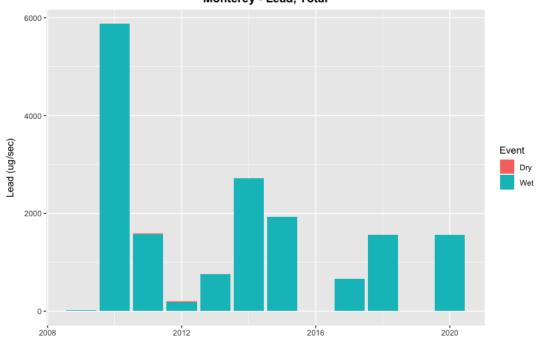



INSTANTANEOUS NITRATE LOAD (MG/SEC)

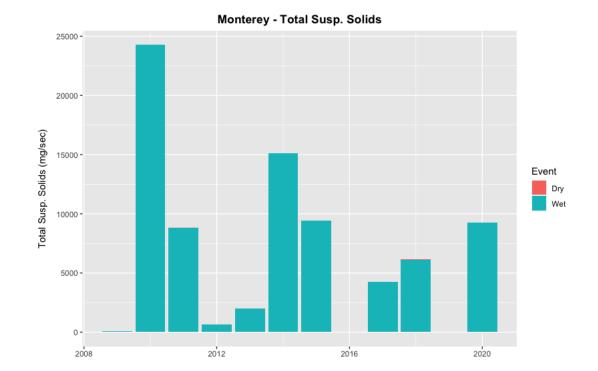
INSTANTANEOUS TOTAL SUSPENDED SOLIDS LOAD (MG/SEC)



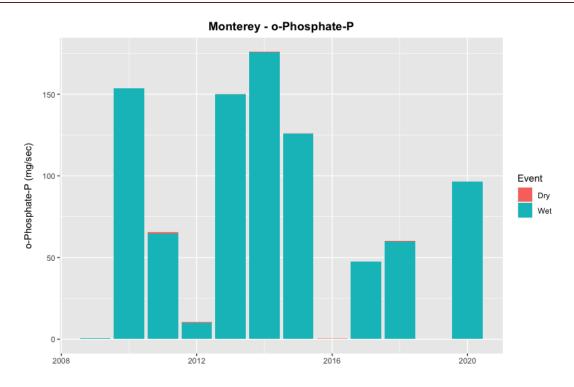
Pacific Grove - Total Susp. Solids


INSTANTANEOUS MBAS (SURFACTANTS) LOAD (MG/SEC)

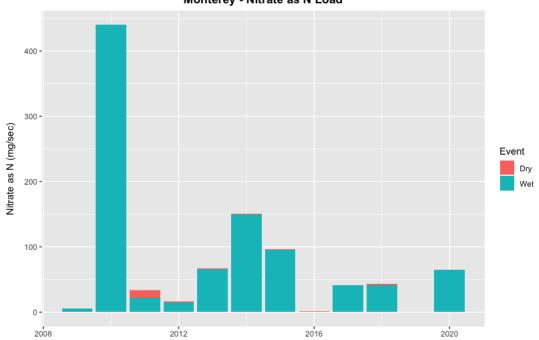
INSTANTANEOUS COPPER LOAD (UG/SEC)



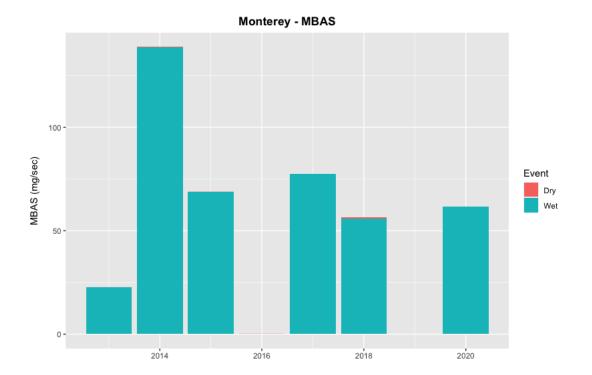
Monterey - Copper, Total


INSTANTANEOUS LEAD LOAD (UG/SEC)

Monterey - Lead, Total



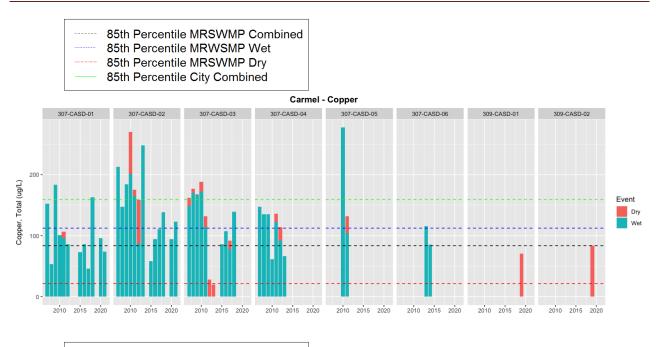
INSTANTANEOUS TOTAL SUSPENDED SOLIDS LOAD (MG/SEC)



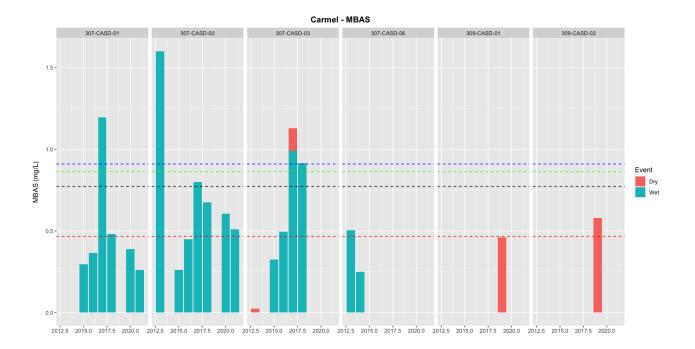
INSTANTANEOUS ORTHOPHOSPHATE LOAD (MG/SEC)

INSTANTANEOUS NITRATE LOAD (MG/SEC)

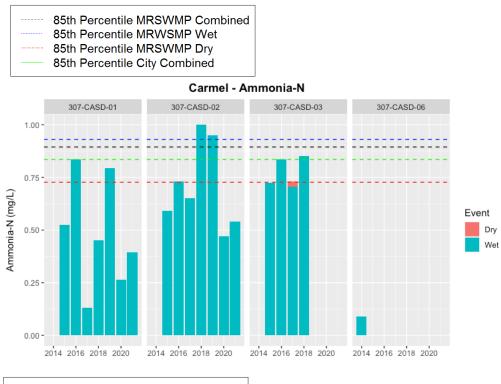
Monterey - Nitrate as N Load

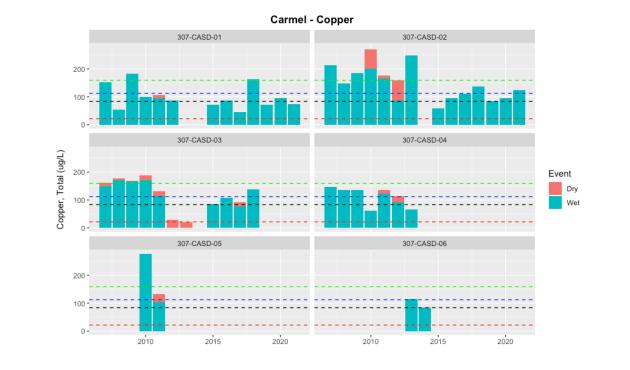

INSTANTANEOUS MBAS (SURFACTANTS) LOAD (MG/SEC)

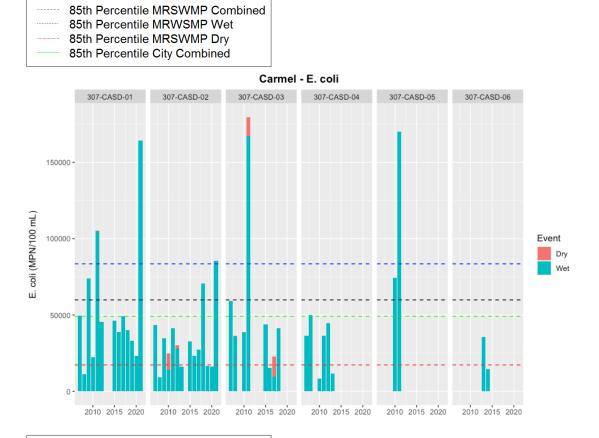
V. CONCENTRATION PLOTS


Plots showing concentration at the time of monitoring were developed for the following pollutants: total copper, total zinc, total lead, nitrate-N, orthophosphate-P, *E.coli, Enterococcus*, total suspended solids, MBAS, and ammonia. Plots include monitoring results from 2000-2021. Data points represent the average daily concentration from the time series of samples taken that day.

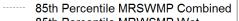
The plots also display the 85th percentiles as horizontal lines. These lines provide information about how wet and dry weather 85th percentiles compare with one another. In most cases, but not all, higher concentrations of pollutants are found in wet weather. There is also an 85th percentile line for the combined wet and dry weather for Cities with more than 5 monitoring sites (Carmel, Monterey and Pacific Grove).

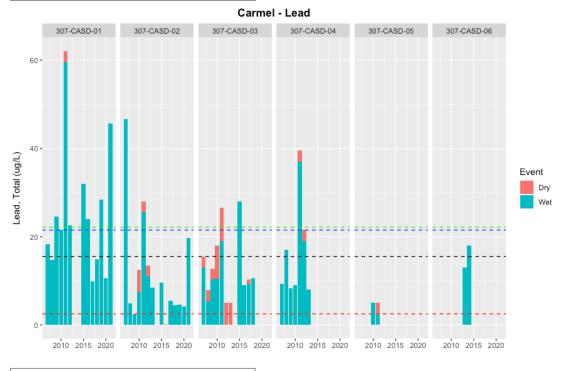

CARMEL

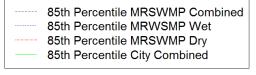

85th Percentile MRSWMP Combined
85th Percentile MRWSMP Wet
85th Percentile MRSWMP Dry
85th Percentile City Combined

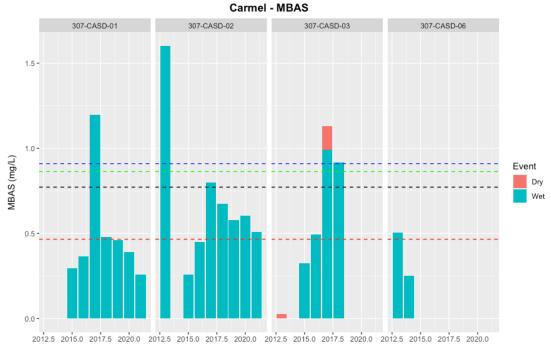


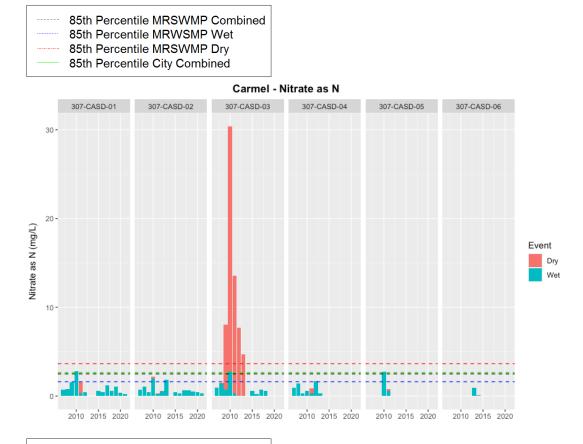



 85th Percentile MRSWMP Combined
 85th Percentile MRWSMP Wet
 85th Percentile MRSWMP Dry
 85th Percentile City Combined

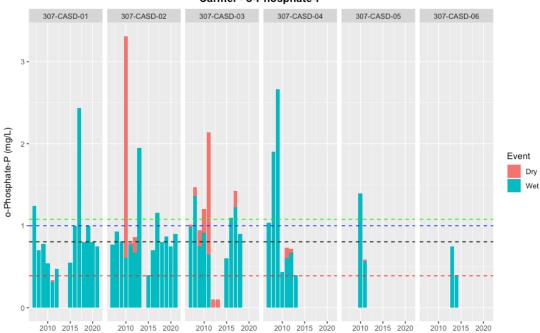


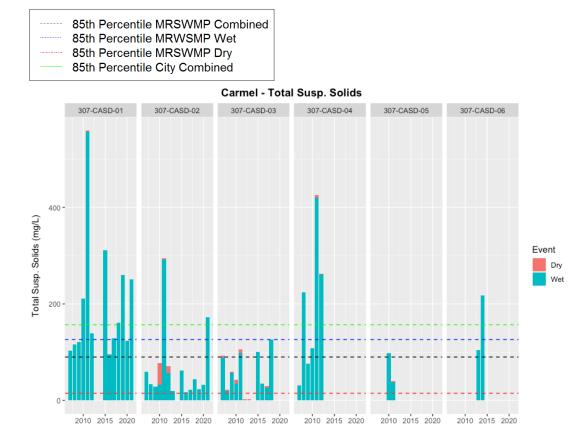


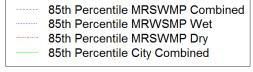


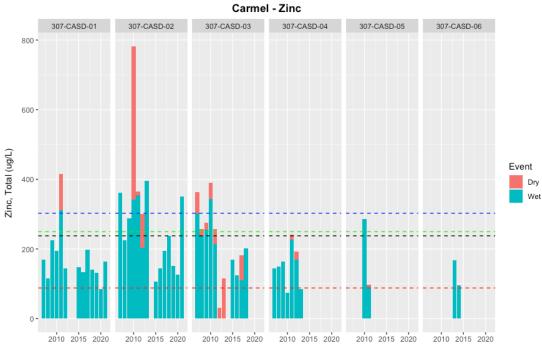


- 85th Percentile MRWSMP Wet 85th Percentile MRSWMP Dry
 - 85th Percentile City Combined
 - 85th Percentile City Combined

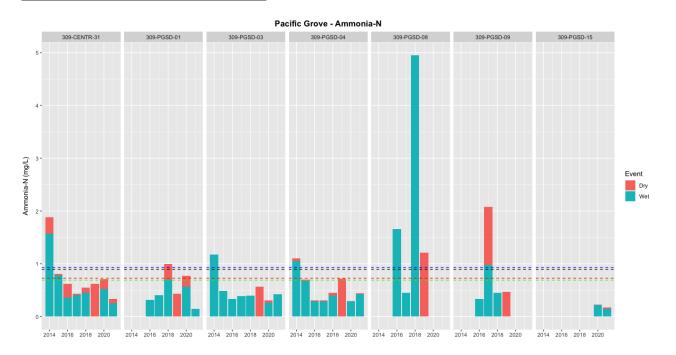

 85th Percentile MRSWMP Combined

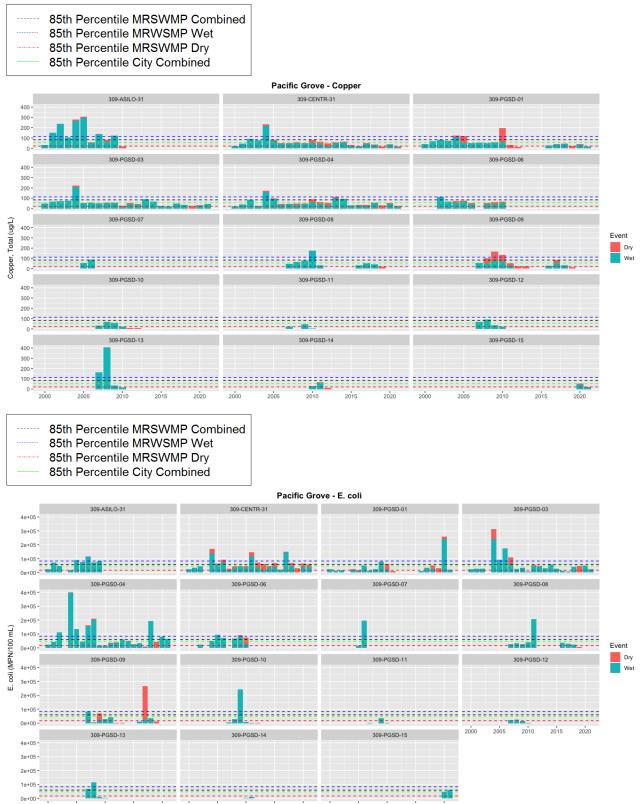

 85th Percentile MRWSMP Wet


 85th Percentile MRSWMP Dry


 85th Percentile City Combined

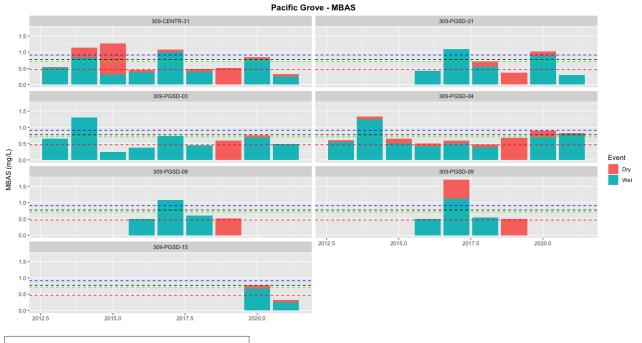
Carmel - o-Phosphate-P



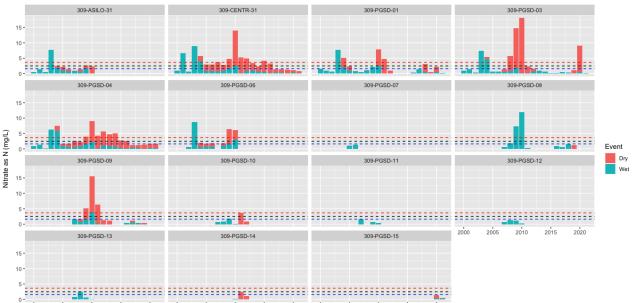


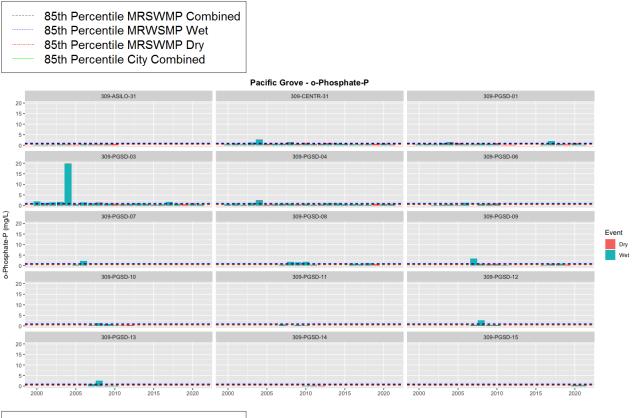
PACIFIC GROVE

- 85th Percentile MRSWMP Combined
- 85th Percentile MRWSMP Wet
- 85th Percentile MRSWMP Dry
 - 85th Percentile City Combined

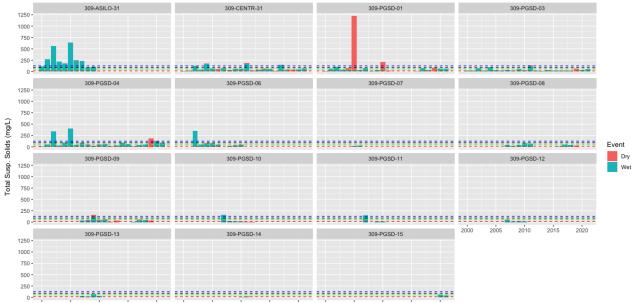


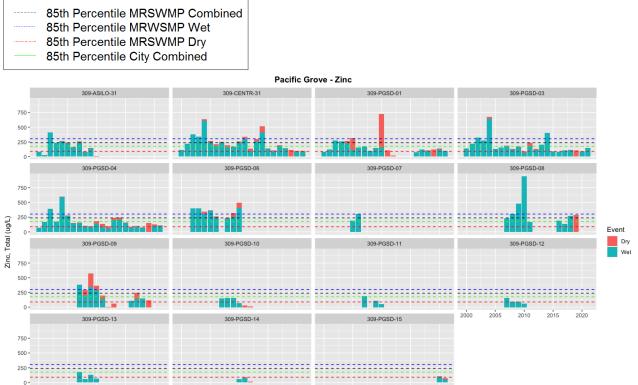
0 -=


400 ·

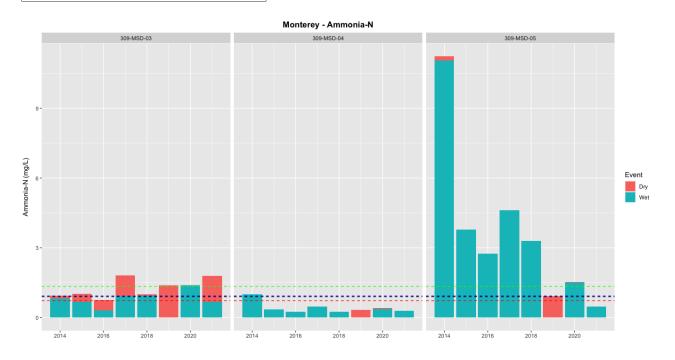


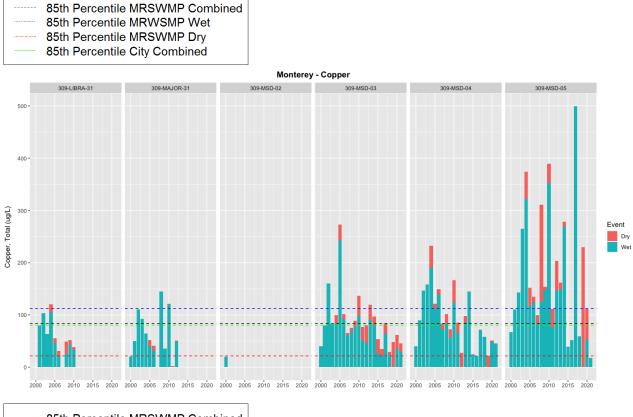
85th Percentile MRSWMP Combined
85th Percentile MRWSMP Wet
85th Percentile MRSWMP Dry
85th Percentile City Combined


Pacific Grove - Nitrate as N



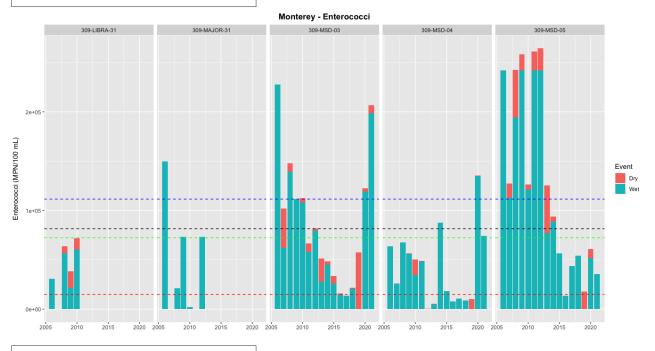
 85th Percentile MRSWMP Combined
 85th Percentile MRWSMP Wet
 85th Percentile MRSWMP Dry
 85th Percentile City Combined


Pacific Grove - Total Susp. Solids

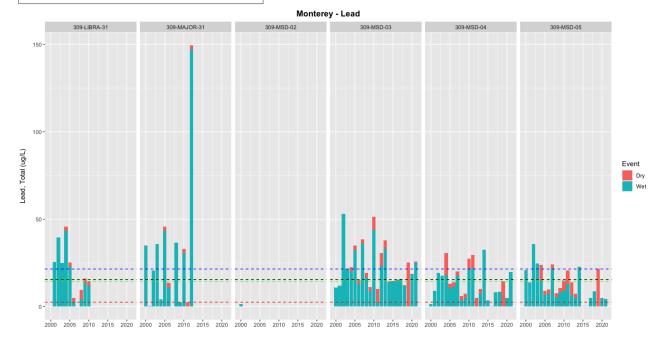


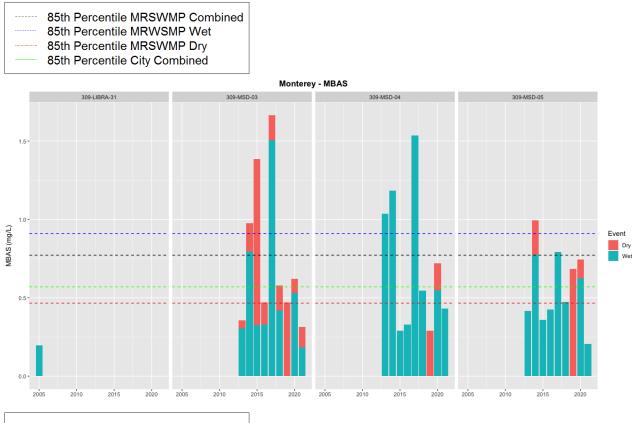
MONTEREY

- 85th Percentile MRSWMP Combined
- 85th Percentile MRWSMP Wet
- 85th Percentile MRSWMP Dry 85th Percentile City Combined

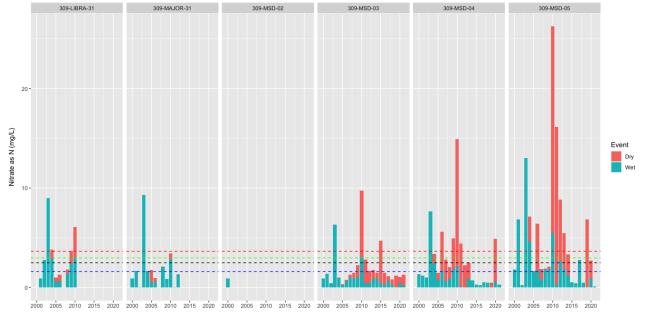

85th Percentile MRSWMP Combined
85th Percentile MRWSMP Wet
85th Percentile MRSWMP Dry
85th Percentile City Combined

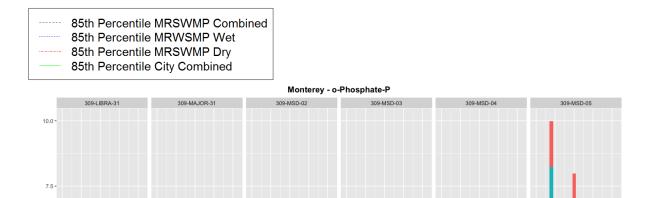
Monterey - E. coli





- 85th Percentile MRSWMP Dry
- 85th Percentile City Combined


85th Percentile MRSWMP Combined
85th Percentile MRWSMP Wet
85th Percentile MRSWMP Dry
85th Percentile City Combined



Monterey - Nitrate as N

 85th Percentile MRSWMP Combined

 85th Percentile MRWSMP Wet

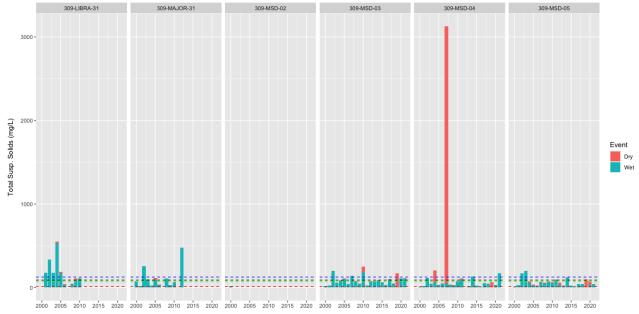
 85th Percentile MRSWMP Dry

 85th Percentile City Combined

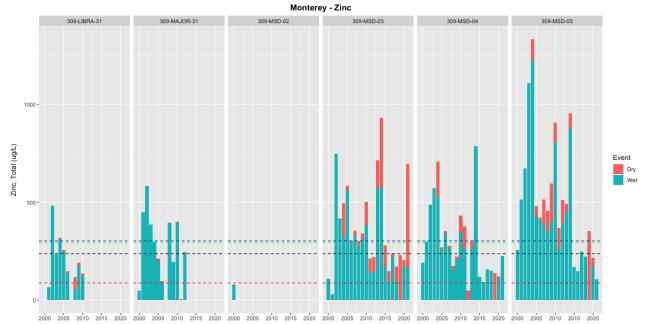
....

..........

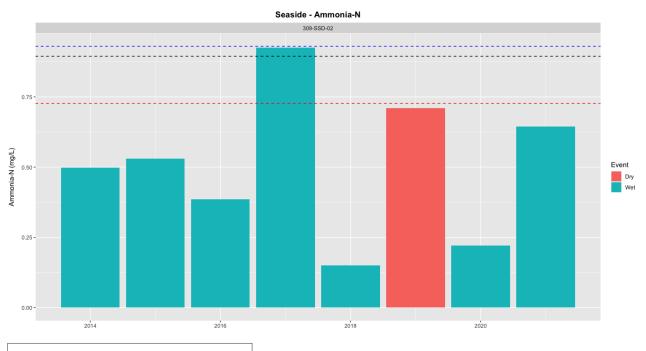

o-Phosphate-P (ug/L)

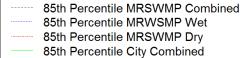

5.0 -

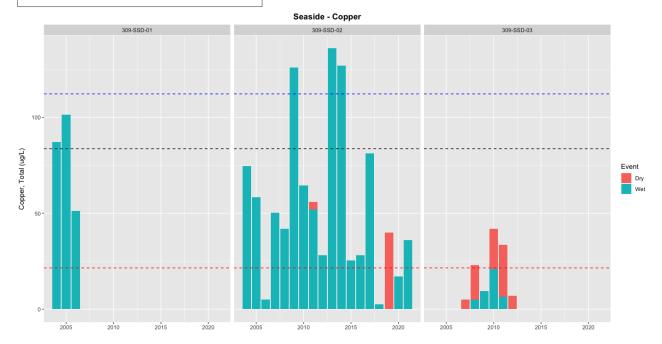
2.5 -

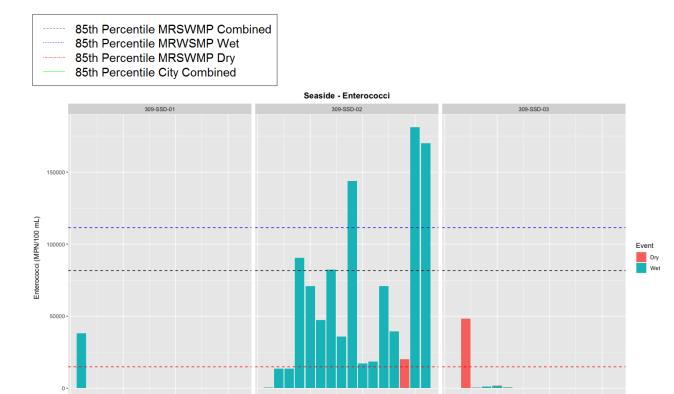

0.0

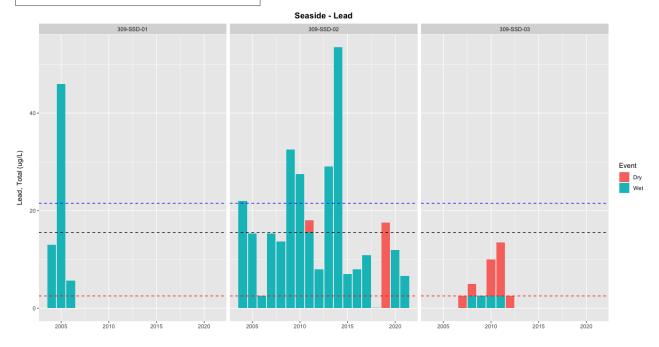
..............

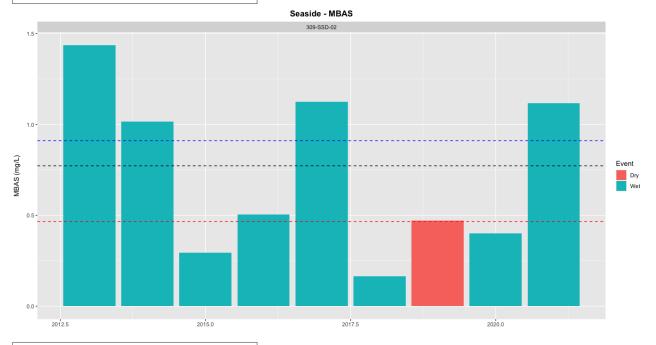


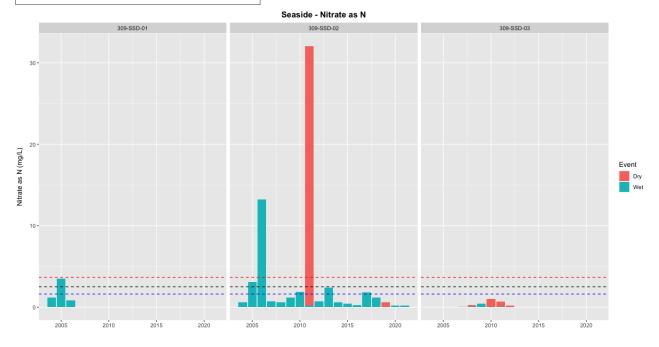


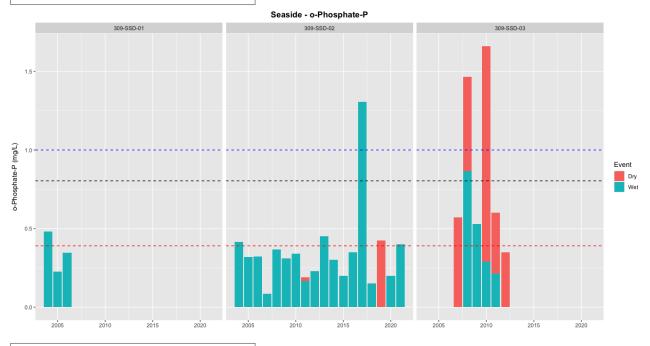


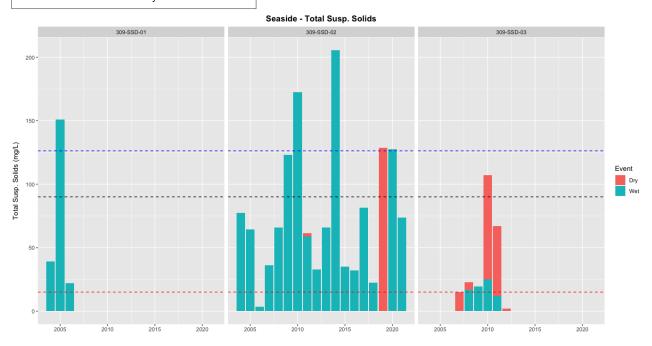


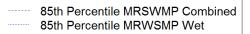

SEASIDE

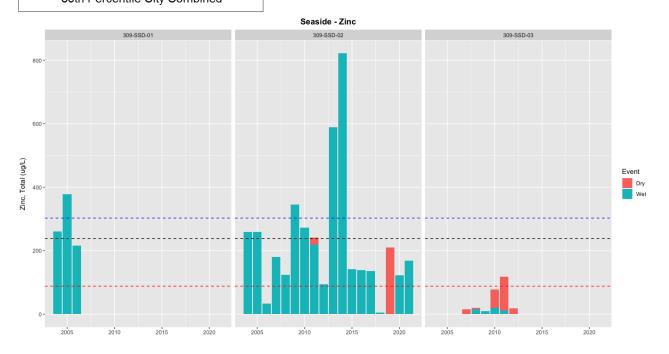


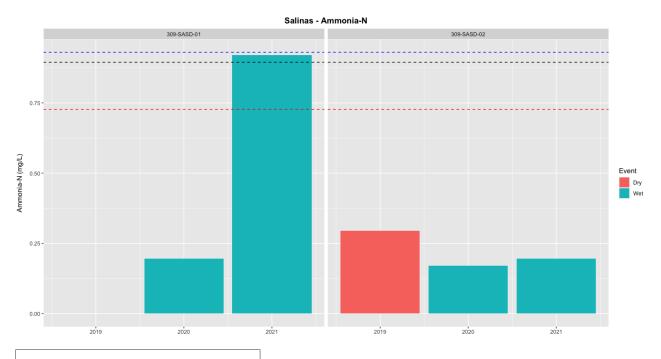



- 85th Percentile MRSWMP Combined
 - 85th Percentile MRWSMP Wet
 - 85th Percentile MRSWMP Dry
 - 85th Percentile City Combined

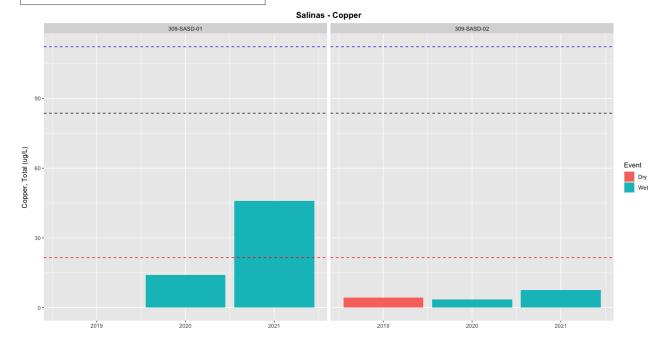


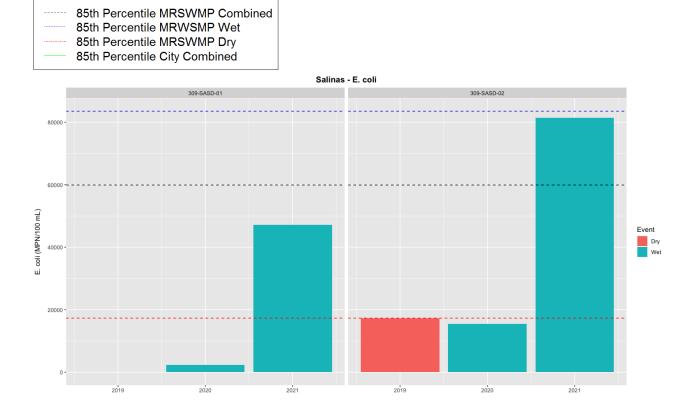


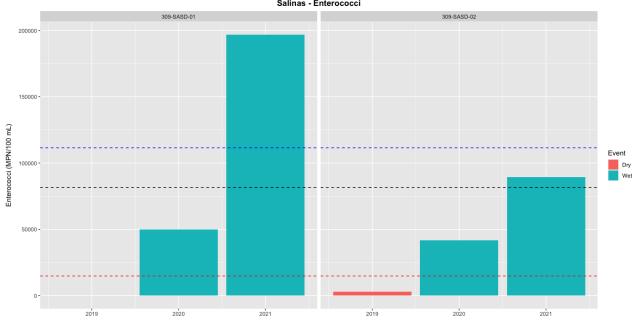

- 85th Percentile MRWSMP Wet
- 85th Percentile MRSWMP Dry
 - 85th Percentile City Combined

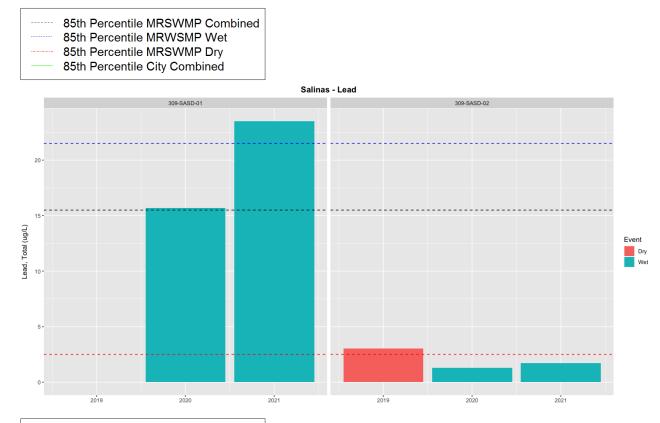


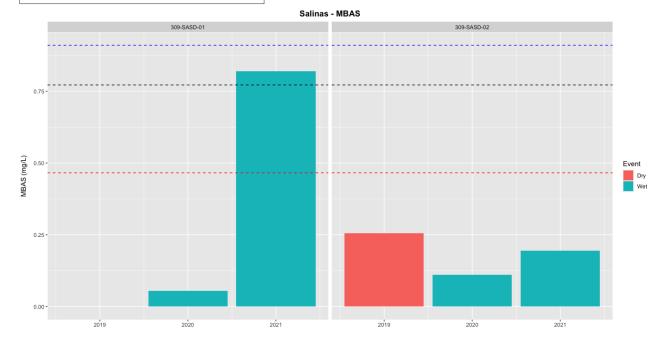


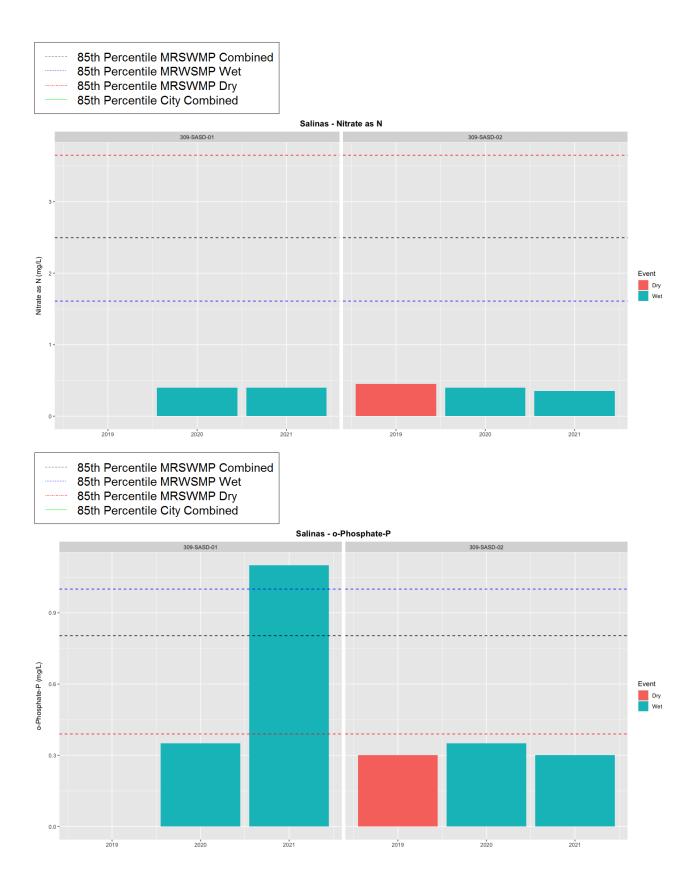

85th Percentile MRSWMP Dry 85th Percentile City Combined




SALINAS







Salinas - Enterococci

